Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

NormNet: Scale Normalization for 6D Pose Estimation in Stacked Scenarios (2311.09269v1)

Published 15 Nov 2023 in cs.CV and cs.AI

Abstract: Existing Object Pose Estimation (OPE) methods for stacked scenarios are not robust to changes in object scale. This paper proposes a new 6DoF OPE network (NormNet) for different scale objects in stacked scenarios. Specifically, each object's scale is first learned with point-wise regression. Then, all objects in the stacked scenario are normalized into the same scale through semantic segmentation and affine transformation. Finally, they are fed into a shared pose estimator to recover their 6D poses. In addition, we introduce a new Sim-to-Real transfer pipeline, combining style transfer and domain randomization. This improves the NormNet's performance on real data even if we only train it on synthetic data. Extensive experiments demonstrate that the proposed method achieves state-of-the-art performance on public benchmarks and the MultiScale dataset we constructed. The real-world experiments show that our method can robustly estimate the 6D pose of objects at different scales.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.