Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermally-Resilient Soft Gripper for On-Orbit Operations (2311.08942v2)

Published 15 Nov 2023 in eess.SY and cs.SY

Abstract: Research in soft manipulators has significantly enhanced object grasping capabilities, thanks to their adaptability to various shapes and sizes. Applying this technology to on-orbit servicing, especially during the capture and containment stages of active space debris removal missions, might offer a secure, adaptable, and cost-effective solution compared to the trend of increasing the degrees of freedom and complexity of the manipulator (e.g. ClearSpace, Astroscale). This work aims to conduct an experimental proof of concept, for which challenges such as radiation, vacuum, and microgravity are significant, but the predominant issue is ensuring effective operation in the extreme temperature swings, where flexible materials may exhibit cryogenic crystallization or drastic shifts in their elasticity. This work addresses this challenge through an initial stage of analytical modeling of the thermal dynamics inside the manipulator in orbit; which is then used for the development of a first experimental prototype tested with liquid nitrogen and heat guns. The multi-layered design for Low Earth Orbit (LEO) leverages the properties of TPU at low infill rates for lightweight inherent flexibility, silicone rubber ensuring structural integrity, PTFE (Teflon) for unparalleled thermal stability, and aerogel for insulation. The tendon-actuated servo-driven gripper is tested in the laboratory by varying the shape and size of objects during the grasping. The results, based on servomotor force metrics to assess the flexible manipulator's adaptability and object capture efficiency across temperature changes, affirm the concept's viability. Forces increase up to 220$\%$ in cryogenic conditions and decrease by no more than 50$\%$ at high temperatures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Z. Deng, H. Gao, K. Nagatani, and K. Yoshida, “Planetary rovers’ wheel-soil interaction mechanics: New challenges and applications for wheeled mobile robots,” Intelligent Service Robotics, vol. 4, pp. 17–38, 01 2011.
  2. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, pp. 467–475, 2015.
  3. B. Hoang, S. White, B. Spence, and S. Kiefer, “Commercialization of deployable space systems’ roll-out solar array (rosa) technology for space systems loral (ssl) solar arrays,” in 2016 IEEE Aerospace Conference, 2016, pp. 1–12.
  4. V. Netti, “Dmf: Deployable modular frame for inflatable space habitats,” in Computer Science, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:210976496
  5. E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that navigates its environment through growth,” Science Robotics, vol. 2, no. 8, p. eaan3028, 2017. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.aan3028
  6. Y. Zhang, P. Li, J. Quan, L. Li, G. Zhang, and D. Zhou, “Progress, challenges, and prospects of soft robotics for space applications,” Advanced Intelligent Systems, vol. 5, no. 3, p. 2200071, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200071
  7. J. Karras, C. Fuller, K. Carpenter, A. Buscicchio, D. McKeeby, C. Norman, C. Parcheta, I. Davydychev, and R. Fearing, “Pop-up mars rover with textile-enhanced rigid-flex pcb body,” 05 2017, pp. 5459–5466.
  8. Y. Liu, K. Luo, S. Wang, X. Song, Z. Zhang, Q. Tian, and H. Hu, “A soft and bistable gripper with adjustable energy barrier for fast capture in space,” Soft Robotics, vol. 10, no. 1, pp. 77–87, 2023.
  9. E. Stoll, C. Trentlage, and M. Becker, “The use of biologically inspired gecko material for active debris removal of high priority objects,” 09 2015.
  10. E. S. Clark, “Molecular motion in polytetrafluoroethylene at cryogenic temperatures,” Journal of Macromolecular Science, Part B, vol. 1, no. 4, pp. 795–800, 1967. [Online]. Available: https://doi.org/10.1080/00222346708212363
  11. G. Theiler, W. Hübner, T. Gradt, P. Klein, and K. Friedrich, “Friction and wear of ptfe composites at cryogenic temperatures11extended version of the paper presented at the 2nd world tribology congress, vienna, 3–7 september 2001.” Tribology International, vol. 35, no. 7, pp. 449–458, 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X0200035X
  12. R. Han, Y. Li, Q. Zhu, and K. Niu, “Research on the preparation and thermal stability of silicone rubber composites: A review,” Composites Part C: Open Access, vol. 8, p. 100249, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666682022000184
  13. S. Wang, M. Hou, K. Ma, Z. Li, H. Geng, W. Zhang, and N. Li, “Research on the influence of extremely cold environment on the performance of silicone rubber and fluorinated silicone rubber,” Polymers (Basel), vol. 14, no. 9, p. 1898, May 2022.
  14. F. Martínez, M. Canales, N. Alcalá, M. Jiménez, M. Yahiaoui, A. Ural, J.-Y. Paris, K. Delbé, and J. Denape, “Analysis of wear mechanism in tpu-steel contact pair by means of long stroke tribometer tests,” 06 2012.
  15. D. S. Kang and S. Yu, “Design-technology co-optimization for cryogenic tensor processing unit,” in 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2022, pp. 1–4.
  16. J. Kim, J. Ahn, J. Kim, D. Lee, S. Kim, and J. Lee, “Influence of silica-aerogel on mechanical characteristics of polyurethane-based composites: Thermal conductivity and strength,” Materials (Basel), vol. 14, no. 7, p. 1790, Apr 2021.
  17. C. Dunckle, M. Aggleton, J. Glassman, and P. Taborek, “Friction of molybdenum disulfide–titanium films under cryogenic vacuum conditions,” Tribology International, vol. 44, no. 12, pp. 1819–1826, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301679X11002179
  18. A. Ellery, “Tutorial review on space manipulators for space debris mitigation,” Robotics, vol. 8, no. 2, 2019. [Online]. Available: https://www.mdpi.com/2218-6581/8/2/34
  19. R. Biesbroek, S. Aziz, A. Wolahan, S.-f. Cipolla, M. Richard-Noca, and L. Piguet, “The clearspace-1 mission: Esa and clearspace team up to remove debris,” in Proc. 8th Eur. Conf. Sp. Debris, 2021, pp. 1–3.
  20. ESA, “Space debris by the numbers,” ESA Newsletter, vol. 8, 2019.
  21. E. M. Botta, I. Sharf, and A. K. Misra, “Simulation of tether-nets for capture of space debris and small asteroids,” Acta Astronautica, vol. 155, pp. 448–461, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094576518303953
  22. V. S. Aslanov and A. S. Ledkov, “Survey of tether system technology for space debris removal missions,” Journal of Spacecraft and Rockets, vol. 0, no. 0, pp. 1–81, 0. [Online]. Available: https://doi.org/10.2514/1.A35646
  23. C. Phipps, K. Baker, B. Bradford, E. George, S. Libby, D. Liedahl, B. Marcovici, S. Olivier, L. Pleasance, J. Reilly, A. Rubenchik, D. Strafford, and M. Valley, “Removing orbital debris with lasers,” Advances in Space Research, vol. 49, 10 2011.
  24. C. Hou, Y. Yang, Y. Yang, K. Yang, X. Zhang, and J. Lu, “Electromagnetic-launch-based method for cost-efficient space debris removal,” Open Astronomy, vol. 29, no. 1, pp. 94–106, 2020. [Online]. Available: https://doi.org/10.1515/astro-2020-0016
  25. A. Parness, “Testing gecko-like adhesives aboard the international space station,” 09 2017.
  26. Y. Zhang, J. Quan, P. Li, W. Song, G. Zhang, L. Li, and D. Zhou, “A flytrap-inspired bistable origami-based gripper for rapid active debris removal,” Advanced Intelligent Systems, vol. 5, no. 7, p. 2200468, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200468
  27. X. Li, Z. Chen, and Y. Wang, “Detumbling a space target using soft robotic manipulators,” in 2022 IEEE International Conference on Mechatronics and Automation (ICMA), 2022, pp. 1807–1812.

Summary

We haven't generated a summary for this paper yet.