Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derivation of sixth-order exponential Runge--Kutta methods for stiff systems (2311.08600v3)

Published 14 Nov 2023 in math.NA and cs.NA

Abstract: This work constructs the first-ever sixth-order exponential Runge--Kutta (ExpRK) methods for the time integration of stiff parabolic PDEs. First, we leverage the exponential B-series theory to restate the stiff order conditions for ExpRK methods of arbitrary order based on an essential set of trees only. Then, we explicitly provide the 36 order conditions required for sixth-order methods and present convergence results. In addition, we are able to solve the 36 stiff order conditions in both their weak and strong forms, resulting in two families of sixth-order parallel stages ExpRK schemes. Interestingly, while these new schemes require a high number of stages, they can be implemented efficiently similar to the cost of a 6-stage method. Numerical experiments are given to confirm the accuracy and efficiency of the new schemes.

Summary

We haven't generated a summary for this paper yet.