Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Hyperuniformity in two-dimensional periodic and quasiperiodic point patterns (2311.07901v1)

Published 14 Nov 2023 in cond-mat.stat-mech

Abstract: We study hyperuniform properties in various two-dimensional periodic and quasiperiodic point patterns. Using the histogram of the two-point distances, we develop an efficient method to calculate the hyperuniformity order metric, which quantifies the regularity of the hyperuniform point patterns. The results are compared with those calculated with the conventional running average method. To discuss how the lattice symmetry affects the order metric, we treat the trellis and Shastry-Sutherland lattices with the same point density as examples of periodic lattices, and Stampfli hexagonal and dodecagonal quasiperiodic tilings with the same point density as examples of quasiperiodic tilings. It is found that the order metric for the Shastry-Sutherland lattice (Stampfli dodecagonal tilings) is smaller than the other in the periodic (quasiperiodic) tiling, meaning that the order metric is deeply related to the lattice symmetry. Namely, the point pattern with higher symmetry is characterized by the smaller order metric when their point densities are identical. Order metrics for several other quasiperiodic tilings are also calculated.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)