Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Decision-Support Systems through Automated Cell Tower Detection (2311.07840v1)

Published 14 Nov 2023 in cs.CV and cs.AI

Abstract: Cell phone coverage and high-speed service gaps persist in rural areas in sub-Saharan Africa, impacting public access to mobile-based financial, educational, and humanitarian services. Improving maps of telecommunications infrastructure can help inform strategies to eliminate gaps in mobile coverage. Deep neural networks, paired with remote sensing images, can be used for object detection of cell towers and eliminate the need for inefficient and burdensome manual mapping to find objects over large geographic regions. In this study, we demonstrate a partially automated workflow to train an object detection model to locate cell towers using OpenStreetMap (OSM) features and high-resolution Maxar imagery. For model fine-tuning and evaluation, we curated a diverse dataset of over 6,000 unique images of cell towers in 26 countries in eastern, southern, and central Africa using automatically generated annotations from OSM points. Our model achieves an average precision at 50% Intersection over Union (IoU) (AP@50) of 81.2 with good performance across different geographies and out-of-sample testing. Accurate localization of cell towers can yield more accurate cell coverage maps, in turn enabling improved delivery of digital services for decision-support applications.

Summary

We haven't generated a summary for this paper yet.