Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework for Zero-Shot Electroencephalography Signal Conversion (2311.07788v1)

Published 13 Nov 2023 in cs.LG, cs.CV, eess.SP, and stat.ML

Abstract: Electroencephalography (EEG) is a prominent non-invasive neuroimaging technique providing insights into brain function. Unfortunately, EEG data exhibit a high degree of noise and variability across subjects hampering generalizable signal extraction. Therefore, a key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style). We hypothesize that the ability to convert EEG signals between tasks and subjects requires the extraction of latent representations accounting for content and style. Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimizes for EEG conversion. Importantly, the latent representations are guided using contrastive learning to promote the latent splits to explicitly represent subject (style) and task (content). We contrast CSLP-AE to conventional supervised, unsupervised (AE), and self-supervised (contrastive learning) training and find that the proposed approach provides favorable generalizable characterizations of subject and task. Importantly, the procedure also enables zero-shot conversion between unseen subjects. While the present work only considers conversion of EEG, the proposed CSLP-AE provides a general framework for signal conversion and extraction of content (task activation) and style (subject variability) components of general interest for the modeling and analysis of biological signals.

Citations (2)

Summary

We haven't generated a summary for this paper yet.