Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Multi-Label Topic Model for Financial Textual Data (2311.07598v1)

Published 10 Nov 2023 in q-fin.ST, cs.CL, and cs.LG

Abstract: This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)