Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Goal-oriented Estimation of Multiple Markov Sources in Resource-constrained Systems (2311.07346v3)

Published 13 Nov 2023 in eess.SY, cs.IT, cs.NI, cs.SY, and math.IT

Abstract: This paper investigates goal-oriented communication for remote estimation of multiple Markov sources in resource-constrained networks. An agent decides the updating times of the sources and transmits the packet to a remote destination over an unreliable channel with delay. The destination is tasked with source reconstruction for actuation. We utilize the metric \textit{cost of actuation error} (CAE) to capture the state-dependent actuation costs. We aim for a sampling policy that minimizes the long-term average CAE subject to an average resource constraint. We formulate this problem as an average-cost constrained Markov Decision Process (CMDP) and relax it into an unconstrained problem by utilizing \textit{Lyapunov drift} techniques. Then, we propose a low-complexity \textit{drift-plus-penalty} (DPP) policy for systems with known source/channel statistics and a Lyapunov optimization-based deep reinforcement learning (LO-DRL) policy for unknown environments. Our policies significantly reduce the number of uninformative transmissions by exploiting the timing of the important information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. Walsh and H. Ye, “Scheduling of networked control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 57–65, 2001.
  2. P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless network design for control systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, 2018.
  3. N. Pappas and M. Kountouris, “Goal-oriented communication for real-time tracking in autonomous systems,” in IEEE ICAS, 2021.
  4. J. Chakravorty and A. Mahajan, “Fundamental limits of remote estimation of autoregressive markov processes under communication constraints,” IEEE Transactions on Automatic Control, vol. 62, no. 3, 2017.
  5. G. Cocco, A. Munari, and G. Liva, “Remote monitoring of two-state markov sources via random access channels: an information freshness vs. state estimation entropy perspective,” IEEE Journal on Selected Areas in Information Theory, 2023.
  6. M. Pezzutto, L. Schenato, and S. Dey, “Transmission power allocation for remote estimation with multi-packet reception capabilities,” Automatica, vol. 140, 2022.
  7. M. Kountouris and N. Pappas, “Semantics-empowered communication for networked intelligent systems,” IEEE Communications Magazine, vol. 59, no. 6, 2021.
  8. P. Popovski et al., “A perspective on time toward wireless 6G,” Proceedings of the IEEE, vol. 110, no. 8, 2022.
  9. Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the wiener process for remote estimation over a channel with random delay,” IEEE Transactions on Information Theory, vol. 66, no. 2, 2019.
  10. V. Tripathi et al., “Wiswarm: Age-of-information-based wireless networking for collaborative teams of uavs,” in IEEE INFOCOM, 2023.
  11. P. Kutsevol, O. Ayan, N. Pappas, and W. Kellerer, “Experimental study of transport layer protocols for wireless networked control systems,” in IEEE SECON, 2023.
  12. G. Stamatakis, N. Pappas, and A. Traganitis, “Control of status updates for energy harvesting devices that monitor processes with alarms,” in IEEE Globecom Workshops, 2019.
  13. A. Maatouk, M. Assaad, and A. Ephremides, “The age of incorrect information: An enabler of semantics-empowered communication,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, 2023.
  14. X. Zheng, S. Zhou, and Z. Niu, “Urgency of information for context-aware timely status updates in remote control systems,” IEEE Transactions on Wireless Communications, vol. 19, no. 11, 2020.
  15. J. S, N. Pappas, and R. V. Bhat, “Distortion minimization with age of information and cost constraints,” in 21st WiOpt, 2023.
  16. A. Nikkhah, A. Ephremides, and N. Pappas, “Age of actuation in a wireless power transfer system,” in IEEE INFOCOM Workshops, 2023.
  17. E. Fountoulakis, N. Pappas, and M. Kountouris, “Goal-oriented policies for cost of actuation error minimization in wireless autonomous systems,” IEEE Communications Letters, vol. 27, no. 9, 2023.
  18. M. Salimnejad, M. Kountouris, and N. Pappas, “Real-time reconstruction of markov sources and remote actuation over wireless channels,” IEEE Transactions on Communications, 2024.
  19. ——, “State-aware real-time tracking and remote reconstruction of a markov source,” Journal of Communications and Networks, 2023.
  20. M. Althoff and A. Mergel, “Comparison of markov chain abstraction and monte carlo simulation for the safety assessment of autonomous cars,” IEEE Transactions on Intelligent Transportation Systems, 2011.
  21. N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the markov-chain model for cyber-attack detection,” IEEE transactions on reliability, 2004.
  22. D.-j. Ma, A. M. Makowski, and A. Shwartz, “Estimation and optimal control for constrained markov chains,” in IEEE CDC, 1986.
  23. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.