Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-automatic Data Enhancement for Document-Level Relation Extraction with Distant Supervision from Large Language Models (2311.07314v1)

Published 13 Nov 2023 in cs.CL and cs.AI

Abstract: Document-level Relation Extraction (DocRE), which aims to extract relations from a long context, is a critical challenge in achieving fine-grained structural comprehension and generating interpretable document representations. Inspired by recent advances in in-context learning capabilities emergent from LLMs, such as ChatGPT, we aim to design an automated annotation method for DocRE with minimum human effort. Unfortunately, vanilla in-context learning is infeasible for document-level relation extraction due to the plenty of predefined fine-grained relation types and the uncontrolled generations of LLMs. To tackle this issue, we propose a method integrating a LLM and a natural language inference (NLI) module to generate relation triples, thereby augmenting document-level relation datasets. We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE, which excels in re-annotating numerous long-tail relation types. We are confident that our method holds the potential for broader applications in domain-specific relation type definitions and offers tangible benefits in advancing generalized language semantic comprehension.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Junpeng Li (3 papers)
  2. Zixia Jia (15 papers)
  3. Zilong Zheng (63 papers)
Citations (8)