Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Joint Source Channel Coding With Attention Modules Over MIMO Channels (2311.07041v3)

Published 13 Nov 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we propose two deep joint source and channel coding (DJSCC) structures with attention modules for the multi-input multi-output (MIMO) channel, including a serial structure and a parallel structure. With singular value decomposition (SVD)-based precoding scheme, the MIMO channel can be decomposed into various sub-channels, and the feature outputs will experience sub-channels with different channel qualities. In the serial structure, one single network is used at both the transmitter and the receiver to jointly process data streams of all MIMO subchannels, while data steams of different MIMO subchannels are processed independently via multiple sub-networks in the parallel structure. The attention modules in both serial and parallel architectures enable the system to adapt to varying channel qualities and adjust the quantity of information outputs in accordance with the channel qualities. Experimental results demonstrate the proposed DJSCC structures have improved image transmission performance, and reveal the phenomenon via non-parameter entropy estimation that the learned DJSCC transceivers tend to transmit more information over better sub-channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. F. Zhai, Y. Eisenberg, and A. K. Katsaggelos, “Joint source-channel coding for video communications,” Handbook of Image and Video Processing, pp. 1065–1082, 2005.
  2. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2326–2330.
  3. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 4774–4778.
  4. D. Burth Kurka and D. Gündüz, “Joint source-channel coding of images with (not very) deep learning,” in International Zurich Seminar on Information and Communication (IZS 2020). Proceedings.   ETH Zurich, 2020, pp. 90–94.
  5. D. B. Kurka and D. Gündüz, “Deep joint source-channel coding of images with feedback,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 5235–5239.
  6. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2300–2316, 2022.
  7. J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 4, pp. 2315–2328, 2022.
  8. T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “Deepjscc-q: Constellation constrained deep joint source-channel coding,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 4, pp. 720–731, 2022.
  9. H. Wu, Y. Shao, K. Mikolajczyk, and D. Gündüz, “Channel-adaptive wireless image transmission with ofdm,” IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2400–2404, 2022.
  10. T.-Y. Tung and D. Gündüz, “Deepwive: Deep-learning-aided wireless video transmission,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2570–2583, 2022.
  11. C. Bian, Y. Shao, H. Wu, and D. Gunduz, “Space-time design for deep joint source channel coding of images over mimo channels,” in 2023 IEEE International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), 2023.
  12. H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. Gündüz, “Vision transformer for adaptive image transmission over mimo channels,” in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 1–6.
  13. Z. Kong, P. Dong, X. Ma, X. Meng, W. Niu, M. Sun, X. Shen, G. Yuan, B. Ren, H. Tang et al., “Spvit: Enabling faster vision transformers via latency-aware soft token pruning,” in European Conference on Computer Vision.   Springer, 2022, pp. 620–640.
  14. Y. Li, J. Hu, Y. Wen, G. Evangelidis, K. Salahi, Y. Wang, S. Tulyakov, and J. Ren, “Rethinking vision transformers for mobilenet size and speed,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 16 889–16 900.
  15. E. Telatar, “Capacity of multi-antenna gaussian channels,” European transactions on telecommunications, vol. 10, no. 6, pp. 585–595, 1999.
  16. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2023.
  17. D. Lombardi and S. Pant, “Nonparametric k-nearest-neighbor entropy estimator,” Physical Review E, vol. 93, no. 1, p. 013310, 2016.
  18. T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.
  19. E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric discrimination: Consistency properties,” International Statistical Review/Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247, 1989.
  20. R. O. Duda and P. E. Hart, “Pattern classification and scene analysis,” in A Wiley-Interscience publication, 1974.

Summary

We haven't generated a summary for this paper yet.