Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Sequential Receding Horizon Control of Multi-Agent Systems under Recurring Signal Temporal Logic (2311.06890v2)

Published 12 Nov 2023 in eess.SY and cs.SY

Abstract: We consider the synthesis problem of a multi-agent system under signal temporal logic (STL) specifications representing bounded-time tasks that need to be satisfied recurrently over an infinite horizon. Motivated by the limited approaches to handling recurring STL systematically, we tackle the infinite-horizon control problem with a receding horizon scheme equipped with additional STL constraints that introduce minimal complexity and a backward-reachability-based terminal condition that is straightforward to construct and ensures recursive feasibility. Subsequently, we decompose the global receding horizon optimization problem into agent-level programs the objectives of which are to minimize local cost functions subject to local and joint STL constraints. We propose a scheduling policy that allows individual agents to sequentially optimize their control actions while maintaining recursive feasibility. This results in a distributed strategy that can operate online as a model predictive controller. Last, we illustrate the effectiveness of our method via a multi-agent system example assigned a surveillance task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. O. Maler and D. Nickovic, “Monitoring Temporal Properties of Continuous Signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.
  2. A. Donzé and O. Maler, “Robust Satisfaction of Temporal Logic over Real-Valued Signals,” in 8th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS, 2010, Klosterneuburg, Austria, 2010, pp. 92–106.
  3. G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.
  4. V. Raman, M. Maasoumy, A. Donze, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in Proceedings of the IEEE Conference on Decision and Control.   IEEE, 2014, pp. 81–87.
  5. S. S. Farahani, V. Raman, and R. M. Murray, “Robust Model Predictive Control for Signal Temporal Logic Synthesis,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 48, no. 27, pp. 323–328, 2015.
  6. S. Sadraddini and C. Belta, “Robust temporal logic model predictive control,” in 53rd Annual Allerton Conference on Communication, Control, and Computing.   IEEE, 2015, pp. 772–779.
  7. V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive Synthesis from Signal Temporal Logic Specifications,” in Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control, ser. HSCC ’15.   New York, NY, USA: ACM, 2015, pp. 239–248.
  8. S. Ghosh, D. Sadigh, P. Nuzzo, V. Raman, A. Donzé, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia, “Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, ser. HSCC ’16.   New York, NY, USA: ACM, 2016, pp. 31–40.
  9. V. Kurtz and H. Lin, “Mixed-Integer Programming for Signal Temporal Logic With Fewer Binary Variables,” IEEE Control Systems Letters, vol. 6, pp. 2635–2640, 2022.
  10. L. Lindemann and D. V. Dimarogonas, “Robust control for signal temporal logic specifications using discrete average space robustness,” Automatica, vol. 101, pp. 377–387, 2019.
  11. Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using the smooth robustness of temporal logic,” in 2017 IEEE Conference on Control Technol. and Applic. (CCTA), 2017, pp. 1235–1240.
  12. N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean robustness for control from signal temporal logic specifications,” in 2019 American Control Conference (ACC), 2019, pp. 1690–1695.
  13. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.
  14. S. Sadraddini and C. Belta, “Formal synthesis of control strategies for positive monotone systems,” IEEE Trans. Automat. Contr., vol. 64, no. 2, pp. 480–495, 2019.
  15. M. Charitidou and D. V. Dimarogonas, “Receding horizon control with online barrier function design under signal temporal logic specifications,” IEEE Trans. Automat. Contr., vol. 68, no. 6, pp. 3545–3556, 2023.
  16. J. Löfberg, “Yalmip : A toolbox for modeling and optimization in matlab,” in In Proceedings of the CACSD Conference, Taiwan, 2004.
  17. “Gurobi optimizer,” https://www.gurobi.com, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.