Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice sums of $I$-Bessel functions, theta functions, linear codes and heat equations (2311.06489v2)

Published 11 Nov 2023 in math-ph, cs.IT, math.IT, math.MP, and math.NT

Abstract: We extend a certain type of identities on sums of $I$-Bessel functions on lattices, previously given by G. Chinta, J. Jorgenson, A. Karlsson and M. Neuhauser. Moreover we prove that, with continuum limit, the transformation formulas of theta functions such as the Dedekind eta function can be given by $I$-Bessel lattice sum identities with characters. We consider analogues of theta functions of lattices coming from linear codes and show that sums of $I$-Bessel functions defined by linear codes can be expressed by complete weight enumerators. We also prove that $I$-Bessel lattice sums appear as solutions of heat equations on general lattices. As a further application, we obtain an explicit solution of the heat equation on $\mathbb{Z}n$ whose initial condition is given by a linear code.

Citations (1)

Summary

We haven't generated a summary for this paper yet.