Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduced Dimensional Monte Carlo Method: Preliminary Integrations (2311.06478v2)

Published 11 Nov 2023 in cond-mat.stat-mech and nlin.CD

Abstract: A technique for reducing the number of integrals in a Monte Carlo calculation is introduced. For integrations relying on classical or mean-field trajectories with local weighting functions, it is possible to integrate analytically at least half of the integration variables prior to setting up the particular Monte Carlo calculation of interest, in some cases more. Proper accounting of invariant phase space structures shows the system's dynamics is reducible into composite stable and unstable degrees of freedom. Stable degrees of freedom behave locally in the reduced dimensional phase space exactly as an analogous integrable system would. Classification of the unstable degrees of freedom is dependent upon the degree of chaos present in the dynamics. The techniques for deriving the requisite canonical coordinate transformations are developed and shown to block diagonalize the stability matrix into irreducible parts. In doing so, it is demonstrated how to reduce the amount of sampling directions necessary in a Monte Carlo simulation. The technique is illustrated by calculating return probabilities and expectation values for different dynamical regimes of a two-degree-of-freedom coupled quartic oscillator within a classical Wigner method framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Monte Carlo Methods. Monographs on Statistics and Applied Probability. Springer, Dordrecht, 1964.
  2. Kurt Binder, editor. Monte Carlo Methods in Statistical Physics. Topics in Current Physics. Springer-Verlag, Heidelberg, 1986.
  3. Mark E. J. Newman and Gerard T. Barkema. Monte Carlo Methods in Statistical Physics. Oxford University Press, Oxford, 1999.
  4. Monte Carlo Simulation in Statistical Physics. Graduate Texts in Physics. Springer-Verlag, Heidelberg, 2010.
  5. Handbook or Monte Carlo Methods. Wiley Series in Probability and Statistics. John Wiley, 2011.
  6. Ed. B.J. Berne. Statistical Mechanics, Part A: Equilibrium Techniques. Plenum Press, New York, 1977.
  7. Ed. B.J. Berne. Statistical Mechanics, Part B: Time Dependent Processes. Plenum Press, New York, 1977.
  8. Studies in molecular dynamics. i. general method. J. Chem. Phys., 31:459–466, 1959.
  9. Statistical Mechanics (Third Edition). Academic Press, Boston, 2011.
  10. D. M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys., 67:279–355, 1995.
  11. The formulation of quantum statistical mechanics based on the feynman path centroid density. i. equilibrium properties. J. Chem. Phys., 100:5093–5105, 1994.
  12. The formulation of quantum statistical mechanics based on the feynman path centroid density. ii. dynamical properties. J. Chem. Phys., 100:5106–5117, 1994.
  13. Path integral centroid variables and the formulation of their exact real time dynamics. J. Chem. Phys., 111:2357–2370, 1999.
  14. A deriviation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables. J. Chem. Phys., 111:2371–2384, 1999.
  15. Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys., 121:3368–3373, 2004.
  16. Chemical reaction rates from ring polymer molecular dynamics. J. Chem. Phys., 122:084106, 2005.
  17. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annu. Rev. Phys. Chem., 64:387–413, 2013.
  18. Bruce J. Berne. On the simulations of quantum systems: path integral methods. Annu. Rev. Phys. Chem., 37:401–424, 1986.
  19. Anatoli Polkovnikov. Phase space representation of quantum dynamics. Ann. Phys. (N.Y.), 325:1790–1852, 2010.
  20. Dynamical quantum noise in trapped bose-einstein condensates. Phys. Rev. A, 58:4824–4835, 1998.
  21. Classical-field method for time dependent bose-einstein condensed gases. Phys. Rev. Lett., 87:210404, 2001.
  22. The truncated wigner method for bose-condensed gases: limits of validity and applications. J. Phys. B: Atom. Molec. Opt. Phys., 35:3599–3631, 2002.
  23. Dynamics and statistical mechanics of ultracold bose gases using c-field techniques. Advances in Physics, 57:363–455, 2008.
  24. Joseph B. Keller. Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. Phys. (N.Y.), 4:180–188, 1958.
  25. Eric J. Heller. The semiclassical way to molecular spectroscopy. Acc. Chem. Res., 14:368–375, 1981.
  26. Semiclassical approximation in quantum mechanics. Reidel Publishing Company, Dordrecht, 1981.
  27. Steven Tomsovic. Complex saddle trajectories for multidimensional quantum wave packet/coherent state propagation: application to a many-body system. Phys. Rev. E, 98:023301, 2018. arXiv:1804.10511 [cond-mat.stat-mech].
  28. Michael F. Herman and E. Kluk. A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys., 91:27–34, 1984.
  29. William H. Miller. Classical s𝑠sitalic_s matrix: Numerical application to inelastic collisions. J. Chem. Phys., 53:3578–3587, 1970.
  30. William H. Miller. The semiclassical initial value representation: a potentially practical way of adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A, 105:2942–2955, 2001.
  31. Kenneth G. Kay. Integral expressions for the semiclassical time-dependent propagator. J. Chem. Phys., 100:4377–4392, 1994.
  32. William H. Miller. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J. Chem. Phys., 61:1823–1834, 1974.
  33. Eric J. Heller. Wigner phase space method: Analysis for semiclassical applications. J. Chem. Phys., 65:1289–1298, 1976.
  34. Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems. J. Chem. Phys., 108:9726–9736, 1998.
  35. Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation. J. Chem. Phys., 109:7064–7074, 1998.
  36. Gregory A. Voth Rigoberto Hernandez. Quantum time correlation functions and classical coherence. Chem. Phys., 233:243–255, 1999.
  37. Practical evaluation of condensed phase quantum correlation functions: A feynman-kleinert variational linearized path integral method. J. Chem. Phys., 119:12179–12193, 2003.
  38. Eugene P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749–759, 1932.
  39. Alfredo Miguel Ozorio de Almeida. The weyl representation in classical and quantum mechanics. Phys. Rep., 295:265–342, 1998.
  40. Directed hk propagator. J. Chem. Phys., 143:124102, 2015.
  41. Communication: Hk propagator uniformized along a one-dimensional manifold in weakly anharmonic systems. J. Chem. Phys., 141:181102, 2014.
  42. Erwin Schrödinger. Der stetige übergang von der mikro- zur makromechanik. Naturwissenschaften, 14:664–666, 1926. translated and reprinted as The continuous transition from micro- to macro mechanics, Collected papers on wave mechanics (Chelsea Publishing, New York, 1982) pp. 41-44.
  43. Roy J. Glauber. Coherent and incoherent states of the radiation field. Phys. Rev., 131:2766–2788, 1963.
  44. Henri Poincaré. Les méthodes nouvelles de la mécanique céleste, volume 3. Gauthier-Villars et fils, Paris, 1899.
  45. V. I. Oseledec. A multiplicative ergodic theorem. lyapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Obšč., 19:197–231, 1968.
  46. Robert Zwanzig. Time-correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem., 16:67–102, 1965.
  47. Manifestations of classical phase space structures in quantum mechanics. Phys. Rep., 223(2):43–133, 1993.
  48. Inverses of 2×2222\times 22 × 2 block matrices. Comput. Math. Appl., 43:119–129, 2002.
  49. Enhancement of many-body quantum interference in chaotic bosonic systems: The role of symmetry and dynamics. Phys. Rev. Lett., 123:215302, 2019. arXiv:1906.06143 [cond-mat.quant-gas].
  50. Jordan normal form for linear cocycles. Random Oper. Stoch. Equ., 7(4):303–358, 1999.
  51. Pierre Gaspard. Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge, UK, 1998.
  52. Fritz Haake. Quantum signatures of chaos, third edition. Springer, Heidelberg, 2010.
  53. M. A. Wolfson and S. Tomsovic. On the stability of long-range sound propagation through a structured ocean. J. Acoust. Soc. Am., 109:2693–2703, 2001. arXiv:0002030 [nlin.CD].
  54. Fluctuations of finite-time stability exponents in the standard map and the detection of small islands. Phys. Rev. E, 76:036207, 2007. arXiv:0706.1494 [nlin.CD].
  55. E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge, 2002.
  56. Spectral analysis of conservative dynamical systems. Phys. Rev. Lett., 63:1226–1229, 1989.
  57. Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors. J. Stat. Phys., 51:135–178, 1988.
  58. Max A Woodbury. Inverting modified matrices. In Memorandum Rept. 42, Statistical Research Group, page 4. Princeton Univ., 1950.
  59. Symmetry-induced many-body quantum interference in chaotic bosonic systems: an augmented truncated wigner method. J. Phys. A: Math. Theor., 55:384009, 2022.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com