Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Density Formula: One Lemma to Bound Them All (2311.06193v3)

Published 10 Nov 2023 in math.CO and cs.DM

Abstract: We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called $k$-planar graphs with $k=1,2$, fan-crossing / fan-planar graphs, $k$-bend RAC-graphs with $k=0,1,2$, quasiplanar graphs, and $k+$-real face graphs. In some cases ($1$-bend and $2$-bend RAC-graphs and fan-crossing / fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Eyal Ackerman. On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete & Computational Geometry, 41(3):365–375, 2009. doi:10.1007/s00454-009-9143-9.
  2. Eyal Ackerman. On topological graphs with at most four crossings per edge. Computational Geometry, 85:101574, 2019. doi:10.1016/j.comgeo.2019.101574.
  3. The maximum size of adjacency-crossing graphs. arXiv preprint, 2023. URL: https://arxiv.org/abs/2309.06507, arXiv:2309.06507.
  4. On the maximum number of edges in quasi-planar graphs. Journal of Combinatorial Theory, Series A, 114(3):563–571, 2007. doi:10.1016/j.jcta.2006.08.002.
  5. On RAC drawings of graphs with one bend per edge. Theoretical Computer Science, 828-829:42–54, 2020. doi:10.1016/j.tcs.2020.04.018.
  6. Axis-parallel right angle crossing graphs. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms (ESA 2023), volume 274 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2023.9.
  7. Beyond-planarity: Turán-type results for non-planar bipartite graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018), volume 123, pages 28:1–28:13, 2018. doi:10.4230/LIPIcs.ISAAC.2018.28.
  8. Nonplanar graph drawings with k vertices per face. In Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG 2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected Papers, volume 14093 of Lecture Notes in Computer Science, pages 86–100. Springer, 2023. doi:10.1007/978-3-031-43380-1_7.
  9. Franz J. Brandenburg. On fan-crossing graphs. Theoretical Computer Science, 841:39–49, 2020. doi:10.1016/j.tcs.2020.07.002.
  10. Edge-minimum saturated k-planar drawings. In Helen C. Purchase and Ignaz Rutter, editors, Graph Drawing and Network Visualization, pages 3–17, Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-92931-2_1.
  11. Weakly and strongly fan-planar graphs. To appear in GD 2023., 2023. URL: https://arxiv.org/abs/2308.08966, arXiv:2308.08966.
  12. Drawing graphs with right angle crossings. Theoretical Computer Science, 412(39):5156–5166, 2011. doi:10.1016/j.tcs.2011.05.025.
  13. A survey on graph drawing beyond planarity. ACM Computing Surveys, 52(1), feb 2019. doi:10.1145/3301281.
  14. Coloring kksubscript𝑘𝑘k_{k}italic_k start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT-free intersection graphs of geometric objects in the plane. European Journal of Combinatorics, 33(5):853–866, 2012. doi:10.1016/j.ejc.2011.09.021.
  15. The density of fan-planar graphs. arXiv preprint, 2014. URL: https://arxiv.org/abs/1403.6184v1, arXiv:1403.6184.
  16. The density of fan-planar graphs. Electronic Journal of Combinatorics, 29(1):P1.29, 2022. doi:10.37236/10521.
  17. Simplifying non-simple fan-planar drawings. J. Graph Algorithms Appl., 27(2):147–172, 2023. doi:10.7155/JGAA.00618.
  18. János Pach. Notes on geometric graph theory, volume 6 of DIMACS Series, pages 273–285. American Mathematical Society, Providence, RI, 1991.
  19. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427–439, 1997. doi:10.1007/BF01215922.
  20. Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 29(1-2):107–117, 1965. doi:10.1007/BF02996313.
  21. Csaba Tóth. On RAC drawings of graphs with two bends per edge, 2023. To appear in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD) 2023. URL: https://arxiv.org/abs/2308.02663.
Citations (7)

Summary

We haven't generated a summary for this paper yet.