Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Federated Learning Across Decentralized and Unshared Archives for Remote Sensing Image Classification (2311.06141v3)

Published 10 Nov 2023 in cs.CV

Abstract: Federated learning (FL) enables the collaboration of multiple deep learning models to learn from decentralized data archives (i.e., clients) without accessing data on clients. Although FL offers ample opportunities in knowledge discovery from distributed image archives, it is seldom considered in remote sensing (RS). In this paper, as a first time in RS, we present a comparative study of state-of-the-art FL algorithms for RS image classification problems. To this end, we initially provide a systematic review of the FL algorithms presented in the computer vision and machine learning communities. Then, we select several state-of-the-art FL algorithms based on their effectiveness with respect to training data heterogeneity across clients (known as non-IID data). After presenting an extensive overview of the selected algorithms, a theoretical comparison of the algorithms is conducted based on their: 1) local training complexity; 2) aggregation complexity; 3) learning efficiency; 4) communication cost; and 5) scalability in terms of number of clients. After the theoretical comparison, experimental analyses are presented to compare them under different decentralization scenarios. For the experimental analyses, we focus our attention on multi-label image classification problems in RS. Based on our comprehensive analyses, we finally derive a guideline for selecting suitable FL algorithms in RS. The code of this work is publicly available at https://git.tu-berlin.de/rsim/FL-RS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and P. S. Yu, “Privacy and robustness in federated learning: Attacks and defenses,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, 2022.
  2. D. Tuia, K. Schindler, B. Demir, G. Camps-Valls, X. X. Zhu, M. Kochupillai, S. Džeroski, J. N. van Rijn, H. H. Hoos, F. Del Frate et al., “Artificial intelligence to advance earth observation: a perspective,” arXiv preprint arXiv:2305.08413, 2023.
  3. C. Cerrejón, O. Valeria, P. Marchand, R. T. Caners, and N. J. Fenton, “No place to hide: Rare plant detection through remote sensing,” Diversity and Distributions, vol. 27, no. 6, pp. 948–961, 2021.
  4. B. Zhang, Y. Wu, B. Zhao, J. Chanussot, D. Hong, J. Yao, and L. Gao, “Progress and challenges in intelligent remote sensing satellite systems,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1814–1822, 2022.
  5. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” International Conference on Artificial Intelligence and Statistics, pp. 1273–1282, 2017.
  6. Z. Xie and S. Song, “FedKL: Tackling data heterogeneity in federated reinforcement learning by penalizing kl divergence,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 4, pp. 1227–1242, 2023.
  7. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  8. X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Federated learning on non-iid features via local batch normalization,” International Conference on Learning Representations, 2021.
  9. Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A survey on federated learning systems: Vision, hype and reality for data privacy and protection,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 3347–3366, 2023.
  10. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” The Conference on Machine Learning and Systems, vol. 2, pp. 429–450, 2020.
  11. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for federated learning,” International Conference on Machine Learning, pp. 5132–5143, 2020.
  12. Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 713–10 722, 2021.
  13. D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough, and V. Saligrama, “Federated learning based on dynamic regularization,” International Conference on Learning Representations, 2021.
  14. L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, “FedDC: Federated learning with non-iid data via local drift decoupling and correction,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 112–10 121, 2022.
  15. M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen, “Local learning matters: Rethinking data heterogeneity in federated learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8397–8406, 2022.
  16. J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “A novel framework for the analysis and design of heterogeneous federated learning,” IEEE Transactions on Signal Processing, pp. 5234–5249, 2021.
  17. H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni, “Federated learning with matched averaging,” International Conference on Learning Representations, 2020.
  18. Y. Qin and M. Kondo, “MLMG: Multi-local and multi-global model aggregation for federated learning,” IEEE International Conference on Pervasive Computing and Communications, pp. 565–571, 2021.
  19. X. Ma, J. Zhang, S. Guo, and W. Xu, “Layer-wised model aggregation for personalized federated learning,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10 092–10 101, 2022.
  20. T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model fusion in federated learning,” Advances in Neural Information Processing Systems, pp. 2351–2363, 2020.
  21. H.-Y. Chen and W.-L. Chao, “FedBE: Making bayesian model ensemble applicable to federated learning,” International Conference on Learning Representations, 2020.
  22. F. Sattler, T. Korjakow, R. Rischke, and W. Samek, “FedAUX: Leveraging unlabeled auxiliary data in federated learning,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  23. Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for heterogeneous federated learning,” International Conference on Machine Learning, pp. 12 878–12 889, 2021.
  24. T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-identical data distribution for federated visual classification,” International Conference on Neural Information Processing Systems, 2019.
  25. X. Zhang, B. Zhang, W. Yu, and X. Kang, “Federated deep learning with prototype matching for object extraction from very-high-resolution remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–16, 2023.
  26. B. Zhang, X. Zhang, M.-O. Pun, and M. Liu, “Prototype-based clustered federated learning for semantic segmentation of aerial images,” IEEE International Geoscience and Remote Sensing Symposium, pp. 2227–2230, 2022.
  27. B. Büyüktaş, G. Sumbul, and B. Demir, “Learning across decentralized multi-modal remote sensing archives with federated learning,” IEEE International Geoscience and Remote Sensing Symposium, pp. 4966–4969, 2023.
  28. S. Chen, T. Shu, H. Zhao, J. Wang, S. Ren, and L. Yang, “Free lunch for federated remote sensing target fine-grained classification: A parameter-efficient framework,” arXiv preprint arXiv:2401.01493, 2024.
  29. Z. Zhang, X. Ma, and J. Ma, “Local differential privacy based membership-privacy-preserving federated learning for deep-learning-driven remote sensing,” Remote Sensing, vol. 15, no. 20, p. 5050, 2023.
  30. J. Zhu, J. Wu, A. K. Bashir, Q. Pan, and Y. Wu, “Privacy-preserving federated learning of remote sensing image classification with dishonest-majority,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023.
  31. D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” International Conference on Learning Representations, 2017.
  32. B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective federated learning design,” IEEE Conference on Computer Communications, pp. 1–10, 2021.
  33. J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr, “LightSecAgg: a lightweight and versatile design for secure aggregation in federated learning,” The Conference on Machine Learning and Systems, pp. 694–720, 2022.
  34. B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling system and statistical heterogeneity for federated learning with adaptive client sampling,” in IEEE Conference on Computer Communications.   IEEE, 2022, pp. 1739–1748.
  35. A. Čolaković and M. Hadžialić, “Internet of things (iot): A review of enabling technologies, challenges, and open research issues,” Computer networks, vol. 144, pp. 17–39, 2018.
  36. S. Misra, A. Mukherjee, A. Roy, N. Saurabh, Y. Rahulamathavan, and M. Rajarajan, “Blockchain at the edge: Performance of resource-constrained iot networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 174–183, 2020.
  37. O. Shahid, S. Pouriyeh, R. M. Parizi, Q. Z. Sheng, G. Srivastava, and L. Zhao, “Communication efficiency in federated learning: Achievements and challenges,” arXiv preprint arXiv:2107.10996, 2021.
  38. F. M. A. Khan, H. Abou-Zeid, and S. A. Hassan, “Deep compression for efficient and accelerated over-the-air federated learning,” IEEE Internet of Things Journal, 2024.
  39. X. Zhu, J. Wang, W. Chen, and K. Sato, “Model compression and privacy preserving framework for federated learning,” Future Generation Computer Systems, vol. 140, pp. 376–389, 2023.
  40. Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control of local updating and model compression for efficient federated learning,” IEEE Transactions on Mobile Computing, 2022.
  41. D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J. Wu, H. Zhan, P. Ustinov, H. Srinivas et al., “Papaya: Practical, private, and scalable federated learning,” The Conference on Machine Learning and Systems, vol. 4, pp. 814–832, 2022.
  42. G. Sumbul, A. De Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, and V. Markl, “BigEarthNet-MM: A large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval,” IEEE Geoscience and Remote Sensing Magazine, no. 3, pp. 174–180, 2021.
  43. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.
  44. P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.
  45. C. Wu, S. He, Z. Yin, and C. Guo, “Towards client selection in satellite federated learning,” Applied Sciences, vol. 14, no. 3, 2024.
Citations (2)

Summary

We haven't generated a summary for this paper yet.