Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data (2311.05090v1)

Published 9 Nov 2023 in cs.HC and cs.CR

Abstract: Virtual reality (VR) and "metaverse" systems have recently seen a resurgence in interest and investment as major technology companies continue to enter the space. However, recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan, raising significant privacy concerns surrounding metaverse technologies. Although previous attempts have been made to anonymize VR motion data, we present in this paper a state-of-the-art VR identification model that can convincingly bypass known defensive countermeasures. We then propose a new "deep motion masking" approach that scalably facilitates the real-time anonymization of VR telemetry data. Through a large-scale user study (N=182), we demonstrate that our method is significantly more usable and private than existing VR anonymity systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com