Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Linear Scaling Data Parallel Training with Overlapping-Aware Gradient Compression (2311.04499v1)

Published 8 Nov 2023 in cs.DC

Abstract: Existing Data Parallel (DP) trainings for deep neural networks (DNNs) often experience limited scalability in speedup due to substantial communication overheads. While Overlapping technique can mitigate such problem by paralleling communication and computation in DP, its effectiveness is constrained by the high communication-to-computation ratios (CCR) of DP training tasks. Gradient compression (GC) is a promising technique to obtain lower CCR by reducing communication volume directly. However, it is challenging to obtain real performance improvement by applying GC into Overlapping because of (1) severe performance penalties in traditional GCs caused by high compression overhead and (2) decline of Overlapping benefit owing to the possible data dependency in GC schemes. In this paper, we propose COVAP, a novel GC scheme designing a new coarse-grained filter, makes the compression overhead close to zero. COVAP ensures an almost complete overlap of communication and computation by employing adaptive compression ratios and tensor sharding tailored to specific training tasks. COVAP also adopts an improved error feedback mechanism to maintain training accuracy. Experiments are conducted on Alibaba Cloud ECS instances with different DNNs of real-world applications. The results illustrate that COVAP outperforms existent GC schemes in time-to-solution by 1.92x-15.39x and exhibits near-linear scaling. Furthermore, COVAP achieves best scalability under experiments on four different cluster sizes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lin Meng (11 papers)
  2. Yuzhong Sun (4 papers)
  3. Weimin Li (22 papers)

Summary

We haven't generated a summary for this paper yet.