Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Upper Limb Motor Function in the Immediate Post-Stroke Perioud Using Accelerometry (2311.04226v1)

Published 1 Nov 2023 in cs.LG, cs.AI, and eess.SP

Abstract: Accelerometry has been extensively studied as an objective means of measuring upper limb function in patients post-stroke. The objective of this paper is to determine whether the accelerometry-derived measurements frequently used in more long-term rehabilitation studies can also be used to monitor and rapidly detect sudden changes in upper limb motor function in more recently hospitalized stroke patients. Six binary classification models were created by training on variable data window times of paretic upper limb accelerometer feature data. The models were assessed on their effectiveness for differentiating new input data into two classes: severe or moderately severe motor function. The classification models yielded Area Under the Curve (AUC) scores that ranged from 0.72 to 0.82 for 15-minute data windows to 0.77 to 0.94 for 120-minute data windows. These results served as a preliminary assessment and a basis on which to further investigate the efficacy of using accelerometry and machine learning to alert healthcare professionals to rapid changes in motor function in the days immediately following a stroke.

Citations (1)

Summary

We haven't generated a summary for this paper yet.