Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
17 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
222 tokens/sec
2000 character limit reached

Keldysh field theory of dynamical exciton condensation transitions in nonequilibrium electron-hole bilayers (2311.04074v3)

Published 7 Nov 2023 in cond-mat.mes-hall and cond-mat.str-el

Abstract: Recent experiments have realized steady-state electrical injection of interlayer excitons in electron-hole bilayers subject to a large bias voltage. In the ideal case in which interlayer tunneling is negligibly weak, the system is in quasi-equilibrium with a reduced effective band gap. Interlayer tunneling introduces a current and drives the system out of equilibrium. In this work we derive a nonequilibrium field theory description of interlayer excitons in biased electron-hole bilayers. In the large bias limit, we find that p-wave interlayer tunneling reduces the effective band gap and increases the effective temperature for intervalley excitons. We discuss possible experimental implications for InAs/GaSb quantum wells and transition metal dichalcogenide bilayers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. M. Blatt, K. Böer, and W. Brandt, Bose-Einstein condensation of excitons, Physical Review 126, 1691 (1962).
  2. L. Keldysh and A. Kozlov, Collective properties of excitons in semiconductors, Sov. Phys. JETP 27, 521 (1968).
  3. Y. E. Lozovik and V. Yudson, A new mechanism for superconductivity: pairing between spatially separated electrons and holes, Zh. Eksp. Teor. Fiz 71, 738 (1976).
  4. M. M. Fogler and F. Wilczek, Josephson effect without superconductivity: realization in quantum hall bilayers, Physical Review Letters 86, 1833 (2001).
  5. J. Eisenstein and A. MacDonald, Bose-Einstein condensation of excitons in bilayer electron systems, Nature 432, 691 (2004).
  6. J. Eisenstein, Exciton condensation in bilayer quantum hall systems, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).
  7. E. Tutuc, M. Shayegan, and D. Huse, Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing, Physical review letters 93, 036802 (2004).
  8. A. Perali, D. Neilson, and A. R. Hamilton, High-temperature superfluidity in double-bilayer graphene, Physical review letters 110, 146803 (2013).
  9. M. Fogler, L. Butov, and K. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures, Nature communications 5, 1 (2014).
  10. F.-C. Wu, F. Xue, and A. MacDonald, Theory of two-dimensional spatially indirect equilibrium exciton condensates, Physical Review B 92, 165121 (2015).
  11. Y. Zeng, N. Wei, and A. H. MacDonald, Layer pseudospin magnetism in a transition metal dichalcogenide double-moiré system, Physical Review B 106, 165105 (2022a).
  12. K. F. Mak and J. Shan, Photonics and optoelectronics of 2d semiconductor transition metal dichalcogenides, Nature Photonics 10, 216 (2016).
  13. K. F. Mak and J. Shan, Opportunities and challenges of interlayer exciton control and manipulation, Nature nanotechnology 13, 974 (2018).
  14. Y. Zeng and A. MacDonald, Electrically controlled two-dimensional electron-hole fluids, Physical Review B 102, 085154 (2020).
  15. M. Xie and A. H. MacDonald, Electrical reservoirs for bilayer excitons, Phys. Rev. Lett. 121, 067702 (2018).
  16. L. V. Keldysh et al., Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20, 1018 (1965).
  17. A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2023).
  18. A. Altland and B. D. Simons, Condensed matter field theory (Cambridge university press, 2010).
  19. F. Xue and A. H. MacDonald, Time-reversal symmetry-breaking nematic insulators near quantum spin hall phase transitions, Physical Review Letters 120, 186802 (2018).
  20. Y. Zeng, F. Xue, and A. H. MacDonald, In-plane magnetic field induced density wave states near quantum spin hall phase transitions, Physical Review B 105, 125102 (2022b).
  21. M. F. Maghrebi and A. V. Gorshkov, Nonequilibrium many-body steady states via keldysh formalism, Physical Review B 93, 014307 (2016).
  22. K. Dunnett and M. Szymańska, Keldysh field theory for nonequilibrium condensation in a parametrically pumped polariton system, Physical Review B 93, 195306 (2016).
  23. A. Mitra, I. Aleiner, and A. Millis, Semiclassical analysis of the nonequilibrium local polaron, Physical review letters 94, 076404 (2005).
  24. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
  25. A. Filinov, N. Prokof’Ev, and M. Bonitz, Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems, Physical review letters 105, 070401 (2010).
  26. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  27. F. Wu, T. Lovorn, and A. MacDonald, Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers, Physical Review B 97, 035306 (2018).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com