Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling and Control of Diesel Engine Emissions using Multi-layer Neural Networks and Economic Model Predictive Control (2311.03552v1)

Published 6 Nov 2023 in eess.SY and cs.SY

Abstract: This paper presents the results of developing a multi-layer Neural Network (NN) to represent diesel engine emissions and integrating this NN into control design. Firstly, a NN is trained and validated to simultaneously predict oxides of nitrogen (N Ox) and Soot using both transient and steady-state data. Based on the input-output correlation analysis, inputs to NN with the highest influence on the emissions are selected while keeping the NN structure simple. Secondly, a co-simulation framework is implemented to integrate the NN emissions model with a model of a diesel engine airpath system built in GT-Power and used to identify a low-order linear parameter-varying (LPV) model for emissions prediction. Finally, an economic supervisory model predictive controller (MPC) is developed using the LPV emissions model to adjust setpoints to an inner-loop airpath tracking MPC. Simulation results are reported illustrating the capability of the resulting controller to reduce N Ox, meet the target Soot limit, and track the adjusted intake manifold pressure and exhaust gas recirculation (EGR) rate targets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.