Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental Approximate Maximum Flow on Undirected Graphs in Subpolynomial Update Time (2311.03174v1)

Published 6 Nov 2023 in cs.DS

Abstract: We provide an algorithm which, with high probability, maintains a $(1-\epsilon)$-approximate maximum flow on an undirected graph undergoing $m$-edge additions in amortized $m{o(1)} \epsilon{-3}$ time per update. To obtain this result, we provide a more general algorithm that solves what we call the incremental, thresholded $p$-norm flow problem that asks to determine the first edge-insertion in an undirected graph that causes the minimum $\ell_p$-norm flow to decrease below a given threshold in value. Since we solve this thresholded problem, our data structure succeeds against an adaptive adversary that can only see the data structure's output. Furthermore, since our algorithm holds for $p = 2$, we obtain improved algorithms for dynamically maintaining the effective resistance between a pair of vertices in an undirected graph undergoing edge insertions. Our algorithm builds upon previous dynamic algorithms for approximately solving the minimum-ratio cycle problem that underlie previous advances on the maximum flow problem [Chen-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva, FOCS '22] as well as recent dynamic maximum flow algorithms [v.d.Brand-Liu-Sidford, STOC '23]. Instead of using interior point methods, which were a key component of these recent advances, our algorithm uses an optimization method based on $\ell_p$-norm iterative refinement and the multiplicative weight update method. This ensures a monotonicity property in the minimum-ratio cycle subproblems that allows us to apply known data structures and bypass issues arising from adaptive queries.

Summary

We haven't generated a summary for this paper yet.