Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Isogeometric collocation for solving the biharmonic equation over planar multi-patch domains (2311.03080v2)

Published 6 Nov 2023 in math.NA and cs.NA

Abstract: We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C4$-smooth isogeometric spline space [34] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L2$-norm as well as to equivalents of the $Hs$-seminorms for $1 \leq s \leq 4$. In the studied case of spline degree $p=9$, the numerical results indicate in case of the Greville points a convergence of order $\mathcal{O}(h{p-3})$ independent of the considered (semi)norm, and show in case of the superconvergent points an improved convergence of order $\mathcal{O}(h{p-2})$ for all (semi)norms except for the equivalent of the $H4$-seminorm, where the order $\mathcal{O}(h{p-3})$ is anyway optimal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. An isogeometric collocation method using superconvergent points. Comput. Methods Appl. Mech. Engrg., 284:1073–1097, 2015.
  2. Isogeometric collocation for acoustic problems with higher-order boundary conditions. Wave Motion, 110:Paper No. 102861, 24, 2022.
  3. Isogeometric collocation methods. Math. Models Methods Appl. Sci., 20(11):2075–2107, 2010.
  4. Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Engrg., 249–252:2–14, 2012.
  5. Enriched isogeometric collocation for two-dimensional time-harmonic acoustics. Comput. Methods Appl. Mech. Engrg., 365:113033, 32, 2020.
  6. Isogeometric analysis of high order partial differential equations on surfaces. Comput. Methods Appl. Mech. Engrg., 295:446 – 469, 2015.
  7. Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Engrg., 241–244:38–51, 2012.
  8. A. M. Bruaset. A survey of preconditioned iterative methods, volume 328 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1995.
  9. Isogeometric collocation using analysis-suitable T-splines of arbitrary degree. Comput. Methods Appl. Mech. Engrg., 301:164–186, 2016.
  10. Analysis-suitable G11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT multi-patch parametrizations for C11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT isogeometric spaces. Comput. Aided Geom. Des., 47:93 – 113, 2016.
  11. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Chichester, England, 2009.
  12. Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput. Methods Appl. Mech. Engrg., 338:208–240, 2018.
  13. Reduced integration at superconvergent points in isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 328:390–410, 2018.
  14. Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity. Comput. Methods Appl. Mech. Engrg., 369:113112, 48, 2020.
  15. A. Giust and B. Jüttler.
  16. H. Gomez and L. De Lorenzis. The variational collocation method. Comput. Methods Appl. Mech. Engrg., 309:152–181, 2016.
  17. Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models. J. Comput. Phys., 262:153–171, 2014.
  18. D. Groisser and J. Peters. Matched Gk𝑘{}^{k}start_FLOATSUPERSCRIPT italic_k end_FLOATSUPERSCRIPT-constructions always yield Ck𝑘{}^{k}start_FLOATSUPERSCRIPT italic_k end_FLOATSUPERSCRIPT-continuous isogeometric elements. Comput. Aided Geom. Des., 34:67–72, 2015.
  19. J. Grošelj. A normalized representation of super splines of arbitrary degree on Powell-Sabin triangulations. BIT Numerical Mathematics, 56(4):1257–1280, 2016.
  20. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 194(39-41):4135–4195, 2005.
  21. Chapter 8 - smooth multi-patch discretizations in isogeometric analysis. In Andrea Bonito and Ricardo H. Nochetto, editors, Geometric Partial Differential Equations - Part II, volume 22 of Handbook of Numerical Analysis, pages 467–543. Elsevier, 2021.
  22. Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 199(5):301–313, 2010. Computational Geometry and Analysis.
  23. An adaptive isogeometric analysis collocation method with a recovery-based error estimator. Comput. Methods Appl. Mech. Engrg., 345:52–74, 2019.
  24. On numerical integration in isogeometric subdivision methods for pdes on surfaces. Computer Methods in Applied Mechanics and Engineering, 302:131–146, 2016.
  25. Construction of analysis-suitable G11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT planar multi-patch parameterizations. Comput.-Aided Des., 97:41–55, 2018.
  26. Isogeometric analysis with C11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT functions on unstructured quadrilateral meshes. The SMAI journal of computational mathematics, 5:67–86, 2019.
  27. An isogeometric C11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT subspace on unstructured multi-patch planar domains. Comput. Aided Geom. Des., 69:55–75, 2019.
  28. M. Kapl and V. Vitrih. Space of C22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-smooth geometrically continuous isogeometric functions on planar multi-patch geometries: Dimension and numerical experiments. Comput. Math. Appl., 73(10):2319–2338, 2017.
  29. M. Kapl and V. Vitrih. Space of C22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT-smooth geometrically continuous isogeometric functions on two-patch geometries. Comput. Math. Appl., 73(1):37–59, 2017.
  30. M. Kapl and V. Vitrih. Dimension and basis construction for C2superscript𝐶2{C}^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-smooth isogeometric spline spaces over bilinear-like G2superscript𝐺2{G}^{2}italic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT two-patch parameterizations. J. Comput. Appl. Math., 335:289–311, 2018.
  31. M. Kapl and V. Vitrih. Solving the triharmonic equation over multi-patch planar domains using isogeometric analysis. J. Comput. Appl. Math., 358:385–404, 2019.
  32. M. Kapl and V. Vitrih. Isogeometric collocation on planar multi-patch domains. Comput. Methods Appl. Mech. Engrg., 360:112684, 2020.
  33. M. Kapl and V. Vitrih. Cssuperscript𝐶𝑠{C}^{s}italic_C start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT-smooth isogeometric spline spaces over planar multi-patch parameterizations. Advances in Computational Mathematics, 47:47, 2021.
  34. Isogeometric analysis with geometrically continuous functions on two-patch geometries. Comput. Math. Appl., 70(7):1518 – 1538, 2015.
  35. Isogeometric collocation for the Reissner-Mindlin shell problem. Comput. Methods Appl. Mech. Engrg., 325:645–665, 2017.
  36. Spline functions on triangulations, volume 110 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007.
  37. A. Mantzaflaris and B. Jüttler. Integration by interpolation and look-up for Galerkin-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284:373–400, 2015. Isogeometric Analysis Special Issue.
  38. Explicit isogeometric collocation for the dynamics of three-dimensional beams undergoing finite motions. Comput. Methods Appl. Mech. Engrg., 343:530–549, 2019.
  39. Isogeometric collocation for Kirchhoff-Love plates and shells. Comput. Methods Appl. Mech. Engrg., 329:396–420, 2018.
  40. Optimal-order isogeometric collocation at Galerkin superconvergent points. Comput. Methods Appl. Mech. Engrg., 316:741–757, 2017.
  41. Isogeometric collocation: A mixed displacement-pressure method for nearly incompressible elasticity. Computer Modeling in Engineering &\&& Sciences, 129(3):1125–1150, 2021.
  42. Fast formation of isogeometric galerkin matrices via integration by interpolation and look-up. Computer Methods in Applied Mechanics and Engineering, 366:113005, 2020.
  43. J. Peters. Geometric continuity. In Handbook of computer aided geometric design, pages 193–227. North-Holland, Amsterdam, 2002.
  44. A. Reali and H. Gomez. An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates. Comput. Methods Appl. Mech. Engrg., 284:623–636, 2015.
  45. A. Reali and T. J. R. Hughes. An introduction to isogeometric collocation methods. In Isogeometric Methods for Numerical Simulation, pages 173–204. Springer, 2015.
  46. Isogeometric collocation for phase-field fracture models. Comput. Methods Appl. Mech. Engrg., 284:583–610, 2015.
  47. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Engrg., 267:170 – 232, 2013.
  48. H. Speleers. Construction of normalized B-splines for a family of smooth spline spaces over Powell-Sabin triangulations. Constr. Approx., 37(1):41–72, 2013.
  49. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 316:1005–1061, 2017.
  50. E. Zampieri and L. F. Pavarino. Isogeometric collocation discretizations for acoustic wave problems. Comput. Methods Appl. Mech. Engrg., 385:114047, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.