Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual-information-driven model for crowd simulation using temporal convolutional network (2311.02996v2)

Published 6 Nov 2023 in cs.AI and cs.LG

Abstract: Crowd simulations play a pivotal role in building design, influencing both user experience and public safety. While traditional knowledge-driven models have their merits, data-driven crowd simulation models promise to bring a new dimension of realism to these simulations. However, most of the existing data-driven models are designed for specific geometries, leading to poor adaptability and applicability. A promising strategy for enhancing the adaptability and realism of data-driven crowd simulation models is to incorporate visual information, including the scenario geometry and pedestrian locomotion. Consequently, this paper proposes a novel visual-information-driven (VID) crowd simulation model. The VID model predicts the pedestrian velocity at the next time step based on the prior social-visual information and motion data of an individual. A radar-geometry-locomotion method is established to extract the visual information of pedestrians. Moreover, a temporal convolutional network (TCN)-based deep learning model, named social-visual TCN, is developed for velocity prediction. The VID model is tested on three public pedestrian motion datasets with distinct geometries, i.e., corridor, corner, and T-junction. Both qualitative and quantitative metrics are employed to evaluate the VID model, and the results highlight the improved adaptability of the model across all three geometric scenarios. Overall, the proposed method demonstrates effectiveness in enhancing the adaptability of data-driven crowd models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic,” Nature, vol. 407, no. 6803, pp. 487–490, Sep 2000.
  2. A. Varas, M. Cornejo, D. Mainemer, B. Toledo, J. Rogan, V. Muñoz, and J. Valdivia, “Cellular automaton model for evacuation process with obstacles,” Physica A: Statistical Mechanics and its Applications, vol. 382, no. 2, pp. 631–642, 2007.
  3. S. Hoogendoorn and W. Daamen, “Self-organization in pedestrian flow,” in Traffic and Granular Flow ’03, S. P. Hoogendoorn, S. Luding, P. H. L. Bovy, M. Schreckenberg, and D. E. Wolf, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 373–382.
  4. D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51, no. 5, pp. 4282–4286, may 1995.
  5. X. Song, K. Chen, X. Li, J. Sun, B. Hou, Y. Cui, B. Zhang, G. Xiong, and Z. Wang, “Pedestrian trajectory prediction based on deep convolutional lstm network,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3285–3302, 2021.
  6. J. Ma, W. Song, J. Zhang, S. Lo, and G. Liao, “k-nearest-neighbor interaction induced self-organized pedestrian counter flow,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 10, pp. 2101–2117, 2010.
  7. M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The walking behaviour of pedestrian social groups and its impact on crowd dynamics,” PLOS ONE, vol. 5, no. 4, pp. 1–7, 04 2010.
  8. N. Bellomo, D. Clarke, L. Gibelli, P. Townsend, and B. Vreugdenhil, “Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management,” Physics of Life Reviews, vol. 18, pp. 1–21, 2016.
  9. G. Wang, T. Chen, H. Zheng, J. Wang, X. Hu, K. Deng, Z. Tao, and N. Luo, “Heterogeneous crowd dynamics considering the impact of personality traits under a fire emergency: A questionnaire & simulation-based approach,” Physica A: Statistical Mechanics and its Applications, vol. 610, p. 128411, 2023.
  10. M. Moussaïd, M. Kapadia, T. Thrash, R. W. Sumner, M. Gross, D. Helbing, and C. Hölscher, “Crowd behaviour during high-stress evacuations in an immersive virtual environment,” Journal of The Royal Society Interface, vol. 13, no. 122, p. 20160414, 2016.
  11. X. Song, D. Han, J. Sun, and Z. Zhang, “A data-driven neural network approach to simulate pedestrian movement,” Physica A: Statistical Mechanics and its Applications, vol. 509, pp. 827–844, 2018.
  12. X. Zhao, L. Xia, J. Zhang, and W. Song, “Artificial neural network based modeling on unidirectional and bidirectional pedestrian flow at straight corridors,” Physica A: Statistical Mechanics and its Applications, vol. 547, p. 123825, 2020.
  13. Y. Ma, E. W. Lee, Z. Hu, M. Shi, and R. K. Yuen, “An intelligence-based approach for prediction of microscopic pedestrian walking behavior,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3964–3980, 2019.
  14. Y. Ma, E. W. M. Lee, and R. K. K. Yuen, “An artificial intelligence-based approach for simulating pedestrian movement,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp. 3159–3170, 2016.
  15. X. Zhao, J. Zhang, and W. Song, “A radar-nearest-neighbor based data-driven approach for crowd simulation,” Transportation Research Part C: Emerging Technologies, vol. 129, p. 103260, 2021.
  16. H. Li, Z. Liu, and B. Zhou, “Modeling analysis of t-shaped crowd flow based on artificial neural network,” in CIBDA 2022; 3rd International Conference on Computer Information and Big Data Applications, 2022, pp. 1–5.
  17. Z. Yao, G. Zhang, D. Lu, and H. Liu, “Learning crowd behavior from real data: A residual network method for crowd simulation,” Neurocomputing, vol. 404, pp. 173–185, 2020.
  18. R. Bastien and P. Romanczuk, “A model of collective behavior based purely on vision,” Science Advances, vol. 6, no. 6, p. eaay0792, 2020.
  19. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  20. K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder–decoder approaches,” in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation.   Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 103–111.
  21. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.
  22. S. Gopali, F. Abri, S. Siami-Namini, and A. S. Namin, “A comparison of tcn and lstm models in detecting anomalies in time series data,” in 2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 2415–2420.
  23. M. Nasir, S. Nahavandi, and D. Creighton, “Fuzzy simulation of pedestrian walking path considering local environmental stimuli,” in 2012 IEEE International Conference on Fuzzy Systems, 2012, pp. 1–6.
  24. W. Xie, E. W. M. Lee, and Y. Y. Lee, “Self-organisation phenomena in pedestrian counter flows and its modelling,” Safety Science, vol. 155, p. 105875, 2022.
  25. D. Yanagisawa, A. Kimura, A. Tomoeda, R. Nishi, Y. Suma, K. Ohtsuka, and K. Nishinari, “Introduction of frictional and turning function for pedestrian outflow with an obstacle,” Physical Review E, vol. 80, no. 3, sep 2009.
  26. G. Courtine and M. Schieppati, “Human walking along a curved path. i. body trajectory, segment orientation and the effect of vision,” European Journal of Neuroscience, vol. 18, no. 1, pp. 177–190, 2003.
  27. C. Liu, W. Song, L. Fu, L. Lian, and S. Lo, “Experimental study on relaxation time in direction changing movement,” Physica A: Statistical Mechanics and its Applications, vol. 468, pp. 44–52, 2017.
  28. J. Ma, W. Song, Z. Fang, S. Lo, and G. Liao, “Experimental study on microscopic moving characteristics of pedestrians in built corridor based on digital image processing,” Building and Environment, vol. 45, no. 10, pp. 2160–2169, 2010.
  29. M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G. Theraulaz, “Experimental study of the behavioural mechanisms underlying self-organization in human crowds,” Proceedings of the Royal Society B: Biological Sciences, vol. 276, no. 1668, pp. 2755–2762, may 2009.
  30. D. Helbing, “Traffic and related self-driven many-particle systems,” Rev. Mod. Phys., vol. 73, pp. 1067–1141, Dec 2001.
  31. W. Xie, E. W. M. Lee, and Y. Y. Lee, “Simulation of spontaneous leader–follower behaviour in crowd evacuation,” Automation in Construction, vol. 134, p. 104100, 2022.
  32. J. Drury, C. Cocking, S. Reicher, A. Burton, D. Schofield, A. Hardwick, D. Graham, and P. Langston, “Cooperation versus competition in a mass emergency evacuation: A new laboratory simulation and a new theoretical model,” Behavior research methods, vol. 41, no. 3, pp. 957–970, 2009.
  33. A. Nakayama, K. Hasebe, and Y. b. u. Sugiyama, “Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model,” Phys. Rev. E, vol. 71, p. 036121, Mar 2005.
  34. J. Wąs, B. Gudowski, and P. J. Matuszyk, “Social distances model of pedestrian dynamics,” in Cellular Automata, S. El Yacoubi, B. Chopard, and S. Bandini, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 492–501.
  35. Y. F. Yu and W. G. Song, “Cellular automaton simulation of pedestrian counter flow considering the surrounding environment,” Phys. Rev. E, vol. 75, p. 046112, Apr 2007.
  36. T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate training of deep neural networks,” Advances in neural information processing systems, vol. 29, 2016.
  37. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Icml, 2010.
  38. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.
  39. S. Cao, A. Seyfried, J. Zhang, S. Holl, and W. Song, “Fundamental diagrams for multidirectional pedestrian flows,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2017, no. 3, p. 033404, mar 2017.
  40. C. Dias, M. Abdullah, M. Sarvi, R. Lovreglio, and W. Alhajyaseen, “Modeling and simulation of pedestrian movement planning around corners,” Sustainability, vol. 11, no. 19, 2019.
  41. R. Ye, M. Chraibi, C. Liu, L. Lian, Y. Zeng, J. Zhang, and W. Song, “Experimental study of pedestrian flow through right-angled corridor: uni- and bidirectional scenarios,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, no. 4, p. 043401, apr 2019.
  42. J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried, “Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2011, no. 06, p. P06004, jun 2011.
  43. Y. Li, X. Yang, Z. Wang, L. Chen, and Y. Chen, “Lane-design for mixed pedestrian flow in t-shaped passage,” Physica A: Statistical Mechanics and its Applications, vol. 589, p. 126593, 2022.
  44. S. Cao, J. Zhang, W. Song, C. Shi, and R. Zhang, “The stepping behavior analysis of pedestrians from different age groups via a single-file experiment,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2018, no. 3, p. 033402, mar 2018.
  45. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures.” Analytical Chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.
  46. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 961–971.
  47. A. Vemula, K. Mülling, and J. Oh, “Social attention: Modeling attention in human crowds,” CoRR, vol. abs/1710.04689, 2017.
  48. E. T. Hall, R. L. Birdwhistell, B. Bock, P. Bohannan, A. R. Diebold, M. Durbin, M. S. Edmonson, J. L. Fischer, D. Hymes, S. T. Kimball, W. La Barre, , J. E. McClellan, D. S. Marshall, G. B. Milner, H. B. Sarles, G. L. Trager, and A. P. Vayda, “Proxemics [and comments and replies],” Current Anthropology, vol. 9, no. 2/3, pp. 83–108, 1968.
  49. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
  50. B. Steffen and A. Seyfried, “Methods for measuring pedestrian density, flow, speed and direction with minimal scatter,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 9, pp. 1902–1910, 2010.
  51. H. Xue, D. Huynh, and M. Reynolds, “Ss-lstm: A hierarchical lstm model for pedestrian trajectory prediction,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).   United States: IEEE, Institute of Electrical and Electronics Engineers, May 2018, pp. 1186–1194, 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018 ; Conference date: 12-03-2018 Through 15-03-2018.
  52. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: socially acceptable trajectories with generative adversarial networks,” CoRR, vol. abs/1803.10892, 2018.
  53. H. Manh and G. Alaghband, “Scene-lstm: A model for human trajectory prediction,” CoRR, vol. abs/1808.04018, 2018.

Summary

We haven't generated a summary for this paper yet.