Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PermutEx: Feature-Extraction-Based Permutation -- A New Diffusion Scheme for Image Encryption Algorithms (2311.02795v1)

Published 5 Nov 2023 in cs.CR

Abstract: Traditional permutation schemes mostly focus on random scrambling of pixels, often neglecting the intrinsic image information that could enhance diffusion in image encryption algorithms. This paper introduces PermutEx, a feature-extraction-based permutation method that utilizes inherent image features to scramble pixels effectively. Unlike random permutation schemes, PermutEx extracts the spatial frequency and local contrast features of the image and ranks each pixel based on this information, identifying which pixels are more important or information-rich based on texture and edge information. In addition, a unique permutation key is generated using the Logistic-Sine Map based on chaotic behavior. The ranked pixels are permuted in conjunction with this unique key, effectively permuting the original image into a scrambled version. Experimental results indicate that the proposed method effectively disrupts the correlation in information-rich areas within the image resulting in a correlation value of 0.000062. The effective scrambling of pixels, resulting in nearly zero correlation, makes this method suitable to be used as diffusion in image encryption algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.