Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transposed Poisson superalgebra (2311.02604v1)

Published 5 Nov 2023 in hep-th, math.AC, and math.DG

Abstract: In this paper we propose the notion of a transposed Poisson superalgebra. We prove that a transposed Poisson superalgebra can be constructed by means of a commutative associative superalgebra and an even degree derivation of this algebra. Making use of this we construct two examples of transposed Poisson superalgebra. One of them is the graded differential algebra of differential forms on a smooth finite dimensional manifold, where we use the Lie derivative as an even degree derivation. The second example is the commutative superalgebra of basic fields of the quantum Yang-Mills theory, where we use the BRST-supersymmetry as an even degree derivation to define a graded Lie bracket. We show that a transposed Poisson superalgebra has six identities that play an important role in the study of the structure of this algebra.

Summary

We haven't generated a summary for this paper yet.