Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lengths of divisible codes -- the missing cases (2311.01947v2)

Published 3 Nov 2023 in math.CO, cs.IT, and math.IT

Abstract: A linear code $C$ over $\mathbb{F}_q$ is called $\Delta$-divisible if the Hamming weights $\operatorname{wt}(c)$ of all codewords $c \in C$ are divisible by $\Delta$. The possible effective lengths of $qr$-divisible codes have been completely characterized for each prime power $q$ and each non-negative integer $r$. The study of $\Delta$ divisible codes was initiated by Harold Ward. If $c$ divides $\Delta$ but is coprime to $q$, then each $\Delta$-divisible code $C$ over $\F_q$ is the $c$-fold repetition of a $\Delta/c$-divisible code. Here we determine the possible effective lengths of $pr$-divisible codes over finite fields of characteristic $p$, where $p\in\mathbb{N}$ but $pr$ is not a power of the field size, i.e., the missing cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Sam Adriaensen. A note on small weight codewords of projective geometric codes and on the smallest sets of even type. SIAM Journal on Discrete Mathematics, 37(3):2072–2087, 2023.
  2. On linear codes whose weights and length have a common divisor. Advances in Mathematics, 211(1):94–104, 2007.
  3. Computer classification of linear codes. IEEE Transactions on Information Theory, 67(12):7807–7814, 2021.
  4. The geometry of two-weight codes. Bulletin of the London Mathematical Society, 18(2):97–122, 1986.
  5. Ralph H.F. Denniston. Some maximal arcs in finite projective planes. Journal of Combinatorial Theory, 6(3):317–319, 1969.
  6. James William Peter Hirschfeld and Xavier Hubaut. Sets of even type in PG⁡(3,4)PG34\operatorname{PG}(3,4)roman_PG ( 3 , 4 ), alias the binary (85,24)8524(85,24)( 85 , 24 ) projective geometry code. Journal of Combinatorial Theory, Series A, 29(1):101–112, 1980.
  7. Projective divisible binary codes. In The Tenth International Workshop on Coding and Cryptography 2017 : WCC Proceedings. IEEE Information Theory Society, Saint-Petersburg, September 2017. URL: https://eref.uni-bayreuth.de/40887/.
  8. Partial spreads and vector space partitions. In Network Coding and Subspace Designs, pages 131–170. Springer, 2018.
  9. Johnson type bounds for mixed dimension subspace codes. The Electronic Journal of Combinatorics, 26(3), 2019.
  10. Small sets of even type and codewords. Journal of Geometry, 61:83–104, 1998.
  11. On the lengths of divisible codes. IEEE Transactions on Information Theory, 66(7):4051–4060, 2020.
  12. Lengths of divisible codes with restricted column multiplicities. Advances in Mathematics of Communications, 18(2):505–534, 2024.
  13. On (q+t)𝑞𝑡(q+t)( italic_q + italic_t )-arcs of type (0,2,t)02𝑡(0,2,t)( 0 , 2 , italic_t ) in a Desarguesian plane of order q𝑞qitalic_q. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 108, pages 445–459. Cambridge University Press, 1990.
  14. Sascha Kurz. No projective 16161616-divisible binary linear code of length 131131131131 exists. IEEE Communications Letters, 25(1):38–40, 2020.
  15. Sascha Kurz. Divisible codes. arXiv preprint 2112.11763, 2021.
  16. Sascha Kurz. Vector space partitions of GF(2)8\operatorname{GF}(2)^{8}roman_GF ( 2 ) start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT. Serdica Journal of Computing, 16(2):71–100, 2022.
  17. Jirapha Limbupasiriporn. Small sets of even type in finite projective planes of even order. Journal of Geometry, 98:139–149, 2010.
  18. The Frobenius number of geometric sequences. Integers: Electronic Journal of Combinatorial Number Theory, 8(1):A33, 2008.
  19. Brian Sherman. On sets with only odd secants in geometries over GF⁡(4)GF4\operatorname{GF}(4)roman_GF ( 4 ). Journal of the London Mathematical Society, 2(3):539–551, 1983.
  20. James Joseph Sylvester. On subvariants, i.e. semi-invariants to binary quantics of an unlimited order. American Journal of Mathematics, 5(1):79–136, 1882.
  21. Classification of the odd sets in PG⁡(4,4)PG44\operatorname{PG}(4,4)roman_PG ( 4 , 4 ) and its application to coding theory. Applicable Algebra in Engineering, Communication and Computing, 24(3-4):179–196, 2013.
  22. Harold Nathaniel Ward. Divisible codes. Archiv der Mathematik, 36(1):485–494, 1981.
  23. Harold Nathaniel Ward. Divisibility of codes meeting the Griesmer bound. Journal of Combinatorial Theory, Series A, 83(1):79–93, 1998.
  24. Harold Nathaniel Ward. Divisible codes – a survey. Serdica Mathematical Journal, 27(4):263–278, 2001.
  25. On the stability of sets of even type. Advances in Mathematics, 267:381–394, 2014.

Summary

We haven't generated a summary for this paper yet.