Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-modal Consistency Learning with Fine-grained Fusion Network for Multimodal Fake News Detection (2311.01807v1)

Published 3 Nov 2023 in cs.SI

Abstract: Previous studies on multimodal fake news detection have observed the mismatch between text and images in the fake news and attempted to explore the consistency of multimodal news based on global features of different modalities. However, they fail to investigate this relationship between fine-grained fragments in multimodal content. To gain public trust, fake news often includes relevant parts in the text and the image, making such multimodal content appear consistent. Using global features may suppress potential inconsistencies in irrelevant parts. Therefore, in this paper, we propose a novel Consistency-learning Fine-grained Fusion Network (CFFN) that separately explores the consistency and inconsistency from high-relevant and low-relevant word-region pairs. Specifically, for a multimodal post, we divide word-region pairs into high-relevant and low-relevant parts based on their relevance scores. For the high-relevant part, we follow the cross-modal attention mechanism to explore the consistency. For low-relevant part, we calculate inconsistency scores to capture inconsistent points. Finally, a selection module is used to choose the primary clue (consistency or inconsistency) for identifying the credibility of multimodal news. Extensive experiments on two public datasets demonstrate that our CFFN substantially outperforms all the baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jun Li (778 papers)
  2. Yi Bin (22 papers)
  3. Jie Zou (32 papers)
  4. Guoqing Wang (95 papers)
  5. Yang Yang (884 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.