Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indo LEGO-ABSA: A Multitask Generative Aspect Based Sentiment Analysis for Indonesian Language (2311.01757v1)

Published 3 Nov 2023 in cs.CL and cs.AI

Abstract: Aspect-based sentiment analysis is a method in natural language processing aimed at identifying and understanding sentiments related to specific aspects of an entity. Aspects are words or phrases that represent an aspect or attribute of a particular entity. Previous research has utilized generative pre-trained LLMs to perform aspect-based sentiment analysis. LEGO-ABSA is one framework that has successfully employed generative pre-trained LLMs in aspect-based sentiment analysis, particularly in English. LEGO-ABSA uses a multitask learning and prompting approach to enhance model performance. However, the application of this approach has not been done in the context of Bahasa Indonesia. Therefore, this research aims to implement the multitask learning and prompting approach in aspect-based sentiment analysis for Bahasa Indonesia using generative pre-trained LLMs. In this study, the Indo LEGO-ABSA model is developed, which is an aspect-based sentiment analysis model utilizing generative pre-trained LLMs and trained with multitask learning and prompting. Indo LEGO-ABSA is trained with a hotel domain dataset in the Indonesian language. The obtained results include an f1-score of 79.55% for the Aspect Sentiment Triplet Extraction task, 86.09% for Unified Aspect-based Sentiment Analysis, 79.85% for Aspect Opinion Pair Extraction, 87.45% for Aspect Term Extraction, and 88.09% for Opinion Term Extraction. Indo LEGO-ABSA adopts the LEGO-ABSA framework that employs the T5 model, specifically mT5, by applying multitask learning to train all tasks within aspect-based sentiment analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.