Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tailoring Mixup to Data for Calibration (2311.01434v3)

Published 2 Nov 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Among all data augmentation techniques proposed so far, linear interpolation of training samples, also called Mixup, has found to be effective for a large panel of applications. Along with improved predictive performance, Mixup is also a good technique for improving calibration. However, mixing data carelessly can lead to manifold mismatch, i.e., synthetic data lying outside original class manifolds, which can deteriorate calibration. In this work, we show that the likelihood of assigning a wrong label with mixup increases with the distance between data to mix. To this end, we propose to dynamically change the underlying distributions of interpolation coefficients depending on the similarity between samples to mix, and define a flexible framework to do so without losing in diversity. We provide extensive experiments for classification and regression tasks, showing that our proposed method improves predictive performance and calibration of models, while being much more efficient.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com