Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human participants in AI research: Ethics and transparency in practice (2311.01254v3)

Published 2 Nov 2023 in cs.CY

Abstract: In recent years, research involving human participants has been critical to advances in AI and ML, particularly in the areas of conversational, human-compatible, and cooperative AI. For example, roughly 9% of publications at recent AAAI and NeurIPS conferences indicate the collection of original human data. Yet AI and ML researchers lack guidelines for ethical research practices with human participants. Fewer than one out of every four of these AAAI and NeurIPS papers confirm independent ethical review, the collection of informed consent, or participant compensation. This paper aims to bridge this gap by examining the normative similarities and differences between AI research and related fields that involve human participants. Though psychology, human-computer interaction, and other adjacent fields offer historic lessons and helpful insights, AI research presents several distinct considerations$\unicode{x2014}$namely, participatory design, crowdsourced dataset development, and an expansive role of corporations$\unicode{x2014}$that necessitate a contextual ethics framework. To address these concerns, this manuscript outlines a set of guidelines for ethical and transparent practice with human participants in AI and ML research. Overall, this paper seeks to equip technical researchers with practical knowledge for their work, and to position them for further dialogue with social scientists, behavioral researchers, and ethicists.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Kevin R. McKee (28 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.