Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical characterization of $Z_{2}$ Floquet topological phases via quantum quenches (2311.00114v3)

Published 31 Oct 2023 in cond-mat.quant-gas, cond-mat.mes-hall, and quant-ph

Abstract: The complete characterization of a generic $d$-dimensional Floquet topological phase is usually hard for the requirement of information about the micromotion throughout the entire driving period. In a recent work [L. Zhang et al., Phys. Rev. Lett. 125, 183001 (2020)], an experimentally feasible dynamical detection scheme was proposed to characterize the integer Floquet topological phases using quantum quenches. However, this theory is still far away from completion, especially for free-fermion Floquet topological phases, where the states can also be characterized by $Z_{2}$ invariants. Here we develop the first full and unified dynamical characterization theory for the $Z_{2}$ Floquet topological phases of different dimensionality and tenfold-way symmetry classes by quenching the system from a trivial and static initial state to the Floquet topological regime through suddenly changing the parameters and turning on the periodic driving. By measuring the minimal information of Floquet bands via the stroboscopic time-averaged spin polarizations, we show that the topological spin texture patterns emerging on certain discrete momenta of Brillouin zone called the $0$ or $\pi$ gap highest-order band-inversion surfaces provide a measurable dynamical $Z_{2}$ Floquet invariant, which uniquely determines the Floquet boundary modes in the corresponding quasienergy gap and characterizes the $Z_{2}$ Floquet topology. The applications of our theory are illustrated via one- and two-dimensional models that are accessible in current quantum simulation experiments. Our work provides a highly feasible way to detect the $Z_{2}$ Floquet topology and completes the dynamical characterization for the full tenfold classes of Floquet topological phases, which shall advance the research in theory and experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981).
  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559 (1982).
  3. R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1395 (1983).
  4. K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980).
  5. L. D. Landau and E. M. Lifshitz, Statistical Physics (Elsevier, 2013).
  6. C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005a).
  7. C. L. Kane and E. J. Mele, Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Topological Order and the Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005b).
  8. B. A. Bernevig and S.-C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett. 96, 106802 (2006).
  9. A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).
  10. A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009).
  11. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  12. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  13. T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79, 081406 (2009).
  14. J. ichi Inoue and A. Tanaka, Photoinduced Transition between Conventional and Topological Insulators in Two-Dimensional Electronic Systems, Phys. Rev. Lett. 105, 017401 (2010).
  15. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7, 490 (2011).
  16. R.-J. Slager, A. Bouhon, and F. N. Ünal, Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase, arXiv:2208.12824 .
  17. M. S. Rudner and N. H. Lindner, Band structure engineering and non-equilibrium dynamics in Floquet topological insulators, Nat. Rev. Phys. 2, 229 (2020).
  18. M. Jangjan and M. V. Hosseini, Floquet engineering of topological metal states and hybridization of edge states with bulk states in dimerized two-leg ladders, Sci. Rep. 10, 14256 (2020).
  19. P. Molignini, W. Chen, and R. Chitra, Universal quantum criticality in static and floquet-majorana chains, Phys. Rev. B 98, 125129 (2018).
  20. P. Molignini, W. Chen, and R. Chitra, Generating quantum multicriticality in topological insulators by periodic driving, Phys. Rev. B 101, 165106 (2020).
  21. P. Molignini, Edge mode manipulation through commensurate multifrequency driving, Phys. Rev. B 102, 235143 (2020).
  22. T. Nag and B. Roy, Anomalous and normal dislocation modes in Floquet topological insulators, Commun. Phys. 4, 157 (2021).
  23. A. K. Ghosh, T. Nag, and A. Saha, Systematic generation of the cascade of anomalous dynamical first- and higher-order modes in Floquet topological insulators, Phys. Rev. B 105, 115418 (2022).
  24. M. Jangjan, L. E. F. Foa Torres, and M. V. Hosseini, Floquet topological phase transitions in a periodically quenched dimer, Phys. Rev. B 106, 224306 (2022).
  25. M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering, Adv. Phys. 64, 139 (2015).
  26. A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).
  27. P. Xu, W. Zheng, and H. Zhai, Topological micromotion of Floquet quantum systems, Phys. Rev. B 105, 045139 (2022).
  28. F. Nathan and M. S. Rudner, Topological singularities and the general classification of Floquet-Bloch systems, New J. Phys. 17, 125014 (2015).
  29. R. Roy and F. Harper, Periodic table for Floquet topological insulators, Phys. Rev. B 96, 155118 (2017).
  30. F. N. Ünal, A. Bouhon, and R.-J. Slager, Topological Euler Class as a Dynamical Observable in Optical Lattices, Phys. Rev. Lett. 125, 053601 (2020).
  31. T. Mizoguchi, Y. Kuno, and Y. Hatsugai, Detecting Bulk Topology of Quadrupolar Phase from Quench Dynamics, Phys. Rev. Lett. 126, 016802 (2021).
  32. J. C. Budich and M. Heyl, Dynamical topological order parameters far from equilibrium, Phys. Rev. B 93, 085416 (2016).
  33. C. Yang, L. Li, and S. Chen, Dynamical topological invariant after a quantum quench, Phys. Rev. B 97, 060304 (2018).
  34. Z. Gong and M. Ueda, Topological Entanglement-Spectrum Crossing in Quench Dynamics, Phys. Rev. Lett. 121, 250601 (2018).
  35. M. McGinley and N. R. Cooper, Topology of One-Dimensional Quantum Systems Out of Equilibrium, Phys. Rev. Lett. 121, 090401 (2018).
  36. M. McGinley and N. R. Cooper, Classification of topological insulators and superconductors out of equilibrium, Phys. Rev. B 99, 075148 (2019).
  37. H. Hu and E. Zhao, Topological Invariants for Quantum Quench Dynamics from Unitary Evolution, Phys. Rev. Lett. 124, 160402 (2020).
  38. K. Sim, R. Chitra, and P. Molignini, Quench dynamics and scaling laws in topological nodal loop semimetals, Phys. Rev. B 106, 224302 (2022).
  39. L. Zhang, L. Zhang, and X.-J. Liu, Unified Theory to Characterize Floquet Topological Phases by Quench Dynamics, Phys. Rev. Lett. 125, 183001 (2020).
  40. L. Zhang and X.-J. Liu, Unconventional Floquet Topological Phases from Quantum Engineering of Band-Inversion Surfaces, PRX Quantum 3, 040312 (2022).
  41. B.-B. Wang and L. Zhang, Characterizing Floquet topological phases by quench dynamics: A multiple-subsystem approach, arXiv:2310.08409 .
  42. L. Zhang, L. Zhang, and X.-J. Liu, Dynamical detection of topological charges, Phys. Rev. A 99, 053606 (2019a).
  43. L. Zhang, L. Zhang, and X.-J. Liu, Characterizing topological phases by quantum quenches: A general theory, Phys. Rev. A 100, 063624 (2019b).
  44. L. Zhang, W. Jia, and X.-J. Liu, Universal topological quench dynamics for ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological phases, Sci. Bull. 67, 1236 (2022).
  45. L. Zhou and J. Gong, Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states, Phys. Rev. B 98, 205417 (2018).
  46. L. Li, W. Zhu, and J. Gong, Direct dynamical characterization of higher-order topological phases with nested band inversion surfaces, Sci. Bull. 66, 1502 (2021).
  47. Z. Lei, Y. Deng, and L. Li, Topological classification of higher-order topological phases with nested band inversion surfaces, Phys. Rev. B 106, 245105 (2022).
  48. For the 2D parent integer phase of a 1111D class D Z2subscript𝑍2Z_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT static Hamiltonian Hssubscript𝐻sH_{{\rm s}}italic_H start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT, the n𝑛nitalic_n-th order BISs with n𝑛nitalic_n vanishing Hamiltonian components are of dimensionality (2−n)2𝑛(2-n)( 2 - italic_n ). Hence the 00D highest-order BISs for Hssubscript𝐻sH_{{\rm s}}italic_H start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT are denoted as 2⁢-BISs2-BISs2\text{-BISs}2 -BISs.
  49. A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015).
  50. The d𝑑ditalic_dD first (second) descendant Z2subscript𝑍2Z_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topological phases can be derived as lower-dimensional descendants of the d′superscript𝑑′d^{\prime}italic_d start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPTD parent Z𝑍Zitalic_Z topological phases with dimensionality being reduced by 1111 (or 2222); see Refs. [98, 14].
  51. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78, 195424 (2008).
  52. T. Morimoto, H. C. Po, and A. Vishwanath, Floquet topological phases protected by time glide symmetry, Phys. Rev. B 95, 195155 (2017).
  53. S. Xu and C. Wu, Space-Time Crystal and Space-Time Group, Phys. Rev. Lett. 120, 096401 (2018).
  54. J. Yu, R.-X. Zhang, and Z.-D. Song, Dynamical symmetry indicators for Floquet crystals, Nat. Commun. 12, 5985 (2021c).
  55. B. A. Bernevig and T. L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com