Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Multistate Bennett Acceptance Ratio Methods (2310.20699v3)

Published 31 Oct 2023 in physics.chem-ph, cs.LG, physics.comp-ph, physics.data-an, and stat.AP

Abstract: The multistate Bennett acceptance ratio (MBAR) method is a prevalent approach for computing free energies of thermodynamic states. In this work, we introduce BayesMBAR, a Bayesian generalization of the MBAR method. By integrating configurations sampled from thermodynamic states with a prior distribution, BayesMBAR computes a posterior distribution of free energies. Using the posterior distribution, we derive free energy estimations and compute their associated uncertainties. Notably, when a uniform prior distribution is used, BayesMBAR recovers the MBAR's result but provides more accurate uncertainty estimates. Additionally, when prior knowledge about free energies is available, BayesMBAR can incorporate this information into the estimation procedure by using non-uniform prior distributions. As an example, we show that, by incorporating the prior knowledge about the smoothness of free energy surfaces, BayesMBAR provides more accurate estimates than the MBAR method. Given MBAR's widespread use in free energy calculations, we anticipate BayesMBAR to be an essential tool in various applications of free energy calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (8)
  1. Chipot, C.; Pohorille, A. Free Energy Calculations; Springer, 2007; Vol. 86
  2. Geyer, C. J. Estimating Normalizing Constants and Reweighting Mixtures; Report, 1994
  3. Berger, J. O. Statistical Decision Theory and Bayesian Analysis; Springer Science & Business Media, 2013
  4. Rasmussen, C. E.; Williams, C. K. I. Gaussian Processes for Machine Learning; The MIT Press, 2005
  5. Xu, K.; Ge, H.; Tebbutt, W.; Tarek, M.; Trapp, M.; Ghahramani, Z. AdvancedHMC.Jl: A Robust, Modular and e Cient Implementation of Advanced HMC Algorithms. Proc. 2nd Symp. Adv. Approx. Bayesian Inference. 2020; pp 1–10
  6. Lao, J.; Louf, R. Blackjax: A Sampling Library for JAX. 2020
  7. Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes. 2022
  8. Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; Zhang, Q. JAX: Composable Transformations of Python+NumPy Programs. 2018
Citations (2)

Summary

We haven't generated a summary for this paper yet.