Pseudo-Kähler and hypersymplectic structures on semidirect products (2310.20660v2)
Abstract: We study left-invariant pseudo-K\"ahler and hypersymplectic structures on semidirect products $G\rtimes H$; we work at the level of the Lie algebra $\mathfrak{g}\rtimes\mathfrak{h}$. In particular we consider the structures induced on $\mathfrak{g}\rtimes\mathfrak{h}$ by existing pseudo-K\"ahler structures on $\mathfrak{g}$ and $\mathfrak{h}$; we classify all semidirect products of this type with $\mathfrak{g}$ of dimension $4$ and $\mathfrak{h}=\mathbb{R}2$. In the hypersymplectic setting, we consider a more general construction on semidirect products. We construct a large class of hypersymplectic Lie algebras whose underlying complex structure is not abelian as well as non-flat hypersymplectic metrics on $k$-step nilpotent Lie algebras for every $k\geq3$.