2000 character limit reached
Generic derivations on algebraically bounded structures (2310.20511v4)
Published 31 Oct 2023 in math.LO and math.AC
Abstract: Let K be an algebraically bounded structure and T be its theory. If T is model complete, then the theory of K endowed with a derivation, denoted by $T{\delta}$, has a model completion. Additionally, we prove that if the theory T is stable/NIP then the model completion of $T{\delta}$ is also stable/NIP. Similar results hold for the theory with several derivations, either commuting or non-commuting.
- Matthias Aschenbrenner, Lou Dries and Joris Hoeven “Asymptotic Differential Algebra and Model Theory of Transseries” Princeton University Press DOI: 10.1515/9781400885411
- Lenore Blum “Differentially closed fields: a model-theoretic tour” In Contributions to Algebra Academic Press, 1977, pp. 37–61 DOI: 10.1016/B978-0-12-080550-1.50009-3
- Angela Borrata “Model Theory of Tame Pairs of Closed Ordered Differential Fields”, 2021
- Thomas Brihaye, Christian Michaux and Cédric Rivière “Cell decomposition and dimension function in the theory of closed ordered differential fields” In Ann. Pure Appl. Logic 159.1-2, 2009, pp. 111–128 DOI: 10.1016/j.apal.2008.09.029
- Quentin Brouette, Pablo Cubides Kovacsics and Françoise Point “Strong density of definable types and closed ordered differential fields” In J. Symb. Log. 84.3, 2019, pp. 1099–1117 DOI: 10.1017/jsl.2018.88
- Zoé Chatzidakis “Model Theory of Fields with Operators – a Survey” In Logic Without Borders: Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics De Gruyter, 2015, pp. 91–114
- “Generic structures and simple theories” In Annals of Pure and Applied Logic 95.1, 1998, pp. 71–92 DOI: 10.1016/S0168-0072(98)00021-9
- Pablo Cubides Kovacsics and Françoise Point “Topological fields with a generic derivation” In Ann. Pure Appl. Logic 174.3, 2023, pp. Paper No. 103211\bibrangessep38 DOI: 10.1016/j.apal.2022.103211
- Lou Dries “Model theory of fields: Decidability, and bounds for polynomial ideals” Advised by D. van Dalen., 1978
- Lou Dries “Dimension of definable sets, algerbraic boundedness and Henselian fields” In Annals of Pure and Applied Logic 45, 1989, pp. 189–209
- “Bounds in the theory of polynomial rings over fields. A nonstandard approach” In Invent. Math. 76.1, 1984, pp. 77–91 DOI: 10.1007/BF01388493
- Arno Fehm “Subfields of ample fields. Rational maps and definability” In Journal of Algebra 323.6, 2010, pp. 1738–1744 DOI: 10.1016/j.jalgebra.2009.11.037
- Antongiulio Fornasiero “Dimensions, matroids, and dense pairs of first-order structures” In Annals of Pure and Applied Logic 162.7, 2011, pp. 514–543 DOI: 10.1016/j.apal.2011.01.003
- “Generic derivations on o-minimal structures” In Journal of Mathematical Logic, 2020 DOI: 10.1142/S0219061321500070
- James Freitag, Omar León Sánchez and Wei Li “Effective definability of Kolchin polynomials” In Proc. Amer. Math. Soc. 148.4, 2020, pp. 1455–1466 DOI: 10.1090/proc/14869
- “Topological differential fields” In Ann. Pure Appl. Logic 161.4, 2010, pp. 570–598 DOI: 10.1016/j.apal.2009.08.001
- “Topological differential fields and dimension functions” In J. Symbolic Logic 77.4, 2012, pp. 1147–1164 DOI: 10.2178/jsl.7704050
- “Geometrical axiomatization for model complete theories of differential topological fields” In Notre Dame J. Formal Logic 47.3, 2006, pp. 331–341 DOI: 10.1305/ndjfl/1163775440
- “Lectures on algebraic model theory” Fields Institute Monographs, 2002 DOI: 10.1007/978-0-8218-2706-2
- Will Johnson “Forking and dividing in fields with several orderings and valuations” In J. Math. Log. 22.1, 2022, pp. Paper No. 2150025\bibrangessep43 DOI: 10.1142/S0219061321500252
- “Curve-excluding fields”, 2023 arXiv:2303.06063v1
- “A note on geometric theories of fields”, 2022 arXiv:2208.00586
- “Schlanke Körper (Slim fields)” In The Journal of Symbolic Logic 75.2 Cambridge University Press, 2010, pp. 481–500 DOI: 10.2178/jsl/1268917491
- E.R. Kolchin “Differential algebra and algebraic groups”, Pure and Applied Mathematics, Vol. 54 Academic Press, New York-London, 1973, pp. xviii+446
- Serge Lang “Algebra” 211, Graduate Texts in Mathematics Springer-Verlag, New York, 2002, pp. xvi+914 DOI: 10.1007/978-1-4613-0041-0
- Omar León Sánchez “Algebro-geometric axioms for DCF0,msubscriptDCF0𝑚{\rm DCF}_{0,m}roman_DCF start_POSTSUBSCRIPT 0 , italic_m end_POSTSUBSCRIPT” In Fund. Math. 243.1, 2018, pp. 1–8 DOI: 10.4064/fm228-11-2017
- Omar León Sánchez and Marcus Tressl “Differentially Large Fields”, 2020 arXiv:2005.00888
- Omar León Sánchez and Marcus Tressl “On ordinary differentially large fields”, 2023 arXiv:2307.12977
- David Marker, Margit Messmer and Anand Pillay “Model Theory of Fields”, Lecture Notes in Logic Cambridge University Press, 2017 DOI: 10.1017/9781316716991
- Tracey McGrail “The model theory of differential fields with finitely many commuting derivations” In The Journal of Symbolic Logic 65.2 Cambridge University Press, 2000, pp. 885–913
- Shezad Mohamed “The uniform companion for large fields with free operators in characteristic zero”, 2023 arXiv:2311.01856
- “Pseudo T-closed fields”, 2023 arXiv:2304.10433 [math.LO]
- Rahim Moosa “Six lectures on model theory and differential-algebraic geometry”, 2022 arXiv:2210.16684
- “Model theory of fields with free operators in characteristic zero” In Journal of Mathematical Logic 42.02, 2014 DOI: 10.1142/S0219061314500093
- David Pierce “Differential forms in the model theory of differential fields” In J. Symbolic Logic 68.3, 2003, pp. 923–945 DOI: 10.2178/jsl/1058448448
- David Pierce “Fields with several commuting derivations” In The Journal of Symbolic Logic 79.1 [Association for Symbolic Logic, Cambridge University Press], 2014, pp. 1–19 JSTOR: 43303717
- “A note on the axioms for differentially closed fields of characteristic zero” In J. Algebra 204.1, 1998, pp. 108–115 DOI: 10.1006/jabr.1997.7359
- Anand Pillay “An introduction to stability theory” Mineola, NY: Dover Publications, 2008
- Françoise Point “Ensembles définissables dans les corps ordonnés différentiellement clos” In Comptes Rendus. Mathématique 349.17–18, 2011, pp. 929–933 DOI: 10.1016/j.crma.2011.08.003
- Cédric Rivière “The model theory of m𝑚mitalic_m-ordered differential fields” In MLQ Math. Log. Q. 52.4, 2006, pp. 331–339 DOI: 10.1002/malq.200510037
- Cédric Rivière “The theory of closed ordered differential fields with m𝑚mitalic_m commuting derivations” In C. R. Math. Acad. Sci. Paris 343.3, 2006, pp. 151–154 DOI: 10.1016/j.crma.2006.06.019
- Cédric Rivière “Further notes on cell decomposition in closed ordered differential fields” In Ann. Pure Appl. Logic 159.1-2, 2009, pp. 100–110 DOI: 10.1016/j.apal.2008.11.002
- Abraham Robinson “On the concept of a differentially closed field” In Bull. Res. Council Israel Sect. F 8F, 1959, pp. 113–128
- Gerald E Sacks “Saturated Model Theory” World Scientific, 2009 DOI: 10.1142/6974
- Thomas Scanlon “Model Theory of Valued D-Fields”, 1997
- Thomas Scanlon “A Model Complete Theory of Valued D-Fields” In The Journal of Symbolic Logic 65.4 [Association for Symbolic Logic, Cambridge University Press], 2000, pp. 1758–1784 DOI: 10.2307/2695074
- Hans Schoutens “The use of ultraproducts in commutative algebra” 1999, Lecture Notes in Mathematics Springer-Verlag, Berlin, 2010, pp. x+204 DOI: 10.1007/978-3-642-13368-8
- Saharon Shelah “Classification Theory: and the Number of Non-Isomorphic Models” Elsevier, 1990
- Pierre Simon “A guide to NIP theories”, 2015 URL: https://www.normalesup.org/~simon/NIP_guide.pdf
- Michael F. Singer “The model theory of ordered differential fields” In J. Symbolic Logic 43.1, 1978, pp. 82–91 DOI: 10.2307/2271951
- Michael F. Singer “Model Theory of Partial Differential Fields: From Commuting to Noncommuting Derivations” In Proceedings of the American Mathematical Society 135.6 American Mathematical Society, 2007, pp. 1929–1934 JSTOR: 20534779
- Marcus Tressl “The uniform companion for large differential fields of characteristic 0” In Trans. Amer. Math. Soc. 357.10, 2005, pp. 3933–3951 DOI: 10.1090/S0002-9947-05-03981-4
- Carol Wood “The Model Theory of Differential Fields of Characteristic p≠0𝑝0p\neq 0italic_p ≠ 0” In Proceedings of the American Mathematical Society 40.2 American Mathematical Society, 1973, pp. 577–584 JSTOR: 2039417
- Yoav Yaffe “Model completion of Lie differential fields” In Annals of Pure and Applied Logic 107.1, 2001, pp. 49–86 DOI: 10.1016/S0168-0072(00)00025-7
- “Commutative Algebra” 1, Graduate Texts in Mathematics Berlin, Heidelberg: Springer Berlin Heidelberg, 1960 DOI: 10.1007/978-3-662-29244-0