Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from Imperfect Demonstration for Interactive Recommendation (2310.19536v1)

Published 30 Oct 2023 in cs.LG and cs.IR

Abstract: Rewards serve as a measure of user satisfaction and act as a limiting factor in interactive recommender systems. In this research, we focus on the problem of learning to reward (LTR), which is fundamental to reinforcement learning. Previous approaches either introduce additional procedures for learning to reward, thereby increasing the complexity of optimization, or assume that user-agent interactions provide perfect demonstrations, which is not feasible in practice. Ideally, we aim to employ a unified approach that optimizes both the reward and policy using compositional demonstrations. However, this requirement presents a challenge since rewards inherently quantify user feedback on-policy, while recommender agents approximate off-policy future cumulative valuation. To tackle this challenge, we propose a novel batch inverse reinforcement learning paradigm that achieves the desired properties. Our method utilizes discounted stationary distribution correction to combine LTR and recommender agent evaluation. To fulfill the compositional requirement, we incorporate the concept of pessimism through conservation. Specifically, we modify the vanilla correction using BeLLMan transformation and enforce KL regularization to constrain consecutive policy updates. We use two real-world datasets which represent two compositional coverage to conduct empirical studies, the results also show that the proposed method relatively improves both effectiveness (2.3\%) and efficiency (11.53\%)

Summary

We haven't generated a summary for this paper yet.