Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Floquet non-equilibrium Green's function and Floquet quantum master equation for electronic transport: The role of electron-electron interactions and spin current with circular light (2310.19362v2)

Published 30 Oct 2023 in quant-ph

Abstract: Non-equilibrium Green's function (NEGF) and quantum master equation (QME) are two main classes of approaches for electronic transport. We discuss various Floquet variances of these formalisms for transport properties of a quantum dot driven via interaction with an external periodic field. We first derived two versions of the Floquet NEGF. We also explore an ansatz of the Floquet NEGF formalism for the interacting systems. In addition, we derived two versions of Floquet QME in the weak interaction regime. With each method, we elaborate on the evaluation of the expectation values of the number and current operators. We examined these methods for transport through a two-level system that is subject to periodic driving. The numerical results of all four methods show good agreement for non-interacting systems in the weak regime. Furthermore, we have observed that circular light can introduce spin current. We expect these Floquet quantum transport methods to be useful in studying molecular junctions exposed to light.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. R. P. Feynman, QED: The strange theory of light and matter, Vol. 90 (Princeton University Press, 2006).
  2. C. Gerry and P. L. Knight, Introductory quantum optics (Cambridge university press, 2005).
  3. M. F. Gelin, D. Egorova, and W. Domcke, Efficient calculation of time-and frequency-resolved four-wave-mixing signals, Accounts of chemical research 42, 1290 (2009).
  4. F. Faisal and J. Kamiński, Floquet-bloch theory of high-harmonic generation in periodic structures, Physical Review A 56, 748 (1997).
  5. H. Sambe, Steady states and quasienergies of a quantum-mechanical system in an oscillating field, Physical Review A 7, 2203 (1973).
  6. S. Kohler, J. Lehmann, and P. Hänggi, Controlling currents through molecular wires, Superlattices and microstructures 34, 419 (2003).
  7. B. Wu and J. Cao, Noise of kondo dot with ac gate: Floquet–green’s function and noncrossing approximation approach, Physical Review B 81, 085327 (2010).
  8. D. Rai and M. Galperin, Electrically driven spin currents in dna, The Journal of Physical Chemistry C 117, 13730 (2013).
  9. M. Kuperman and U. Peskin, Field-induced inversion of resonant tunneling currents through single molecule junctions and the directional photo-electric effect, The Journal of Chemical Physics 146 (2017).
  10. B. Gu and I. Franco, Optical absorption properties of laser-driven matter, Physical Review A 98, 063412 (2018).
  11. Y. Wang and W. Dou, Nonadiabatic dynamics near metal surface with periodic drivings: A floquet surface hopping algorithm, The Journal of Chemical Physics 158 (2023).
  12. F. H. Faisal, Floquet green’s function method for radiative electron scattering and multiphoton ionization in a strong laser field, Computer Physics Reports 9, 57 (1989).
  13. N. Tsuji, T. Oka, and H. Aoki, Correlated electron systems periodically driven out of equilibrium: Floquet+ dmft formalism, Physical Review B 78, 235124 (2008).
  14. G. Cabra, I. Franco, and M. Galperin, Optical properties of periodically driven open nonequilibrium quantum systems, The Journal of chemical physics 152 (2020).
  15. M. Kuperman, U. Peskin, and I. Baldea, Molecular electronics: A theoretical and experimental approach (2015).
  16. T.-S. Ho, K. Wang, and S.-I. Chu, Floquet-liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields, Physical Review A 33, 1798 (1986).
  17. M. Grifoni and P. Hänggi, Driven quantum tunneling, Physics Reports 304, 229 (1998).
  18. A. Schnell, A. Eckardt, and S. Denisov, Is there a floquet lindbladian?, Physical Review B 101, 100301 (2020).
  19. K. Szczygielski, On the application of floquet theorem in development of time-dependent lindbladians, Journal of mathematical physics 55 (2014).
  20. A. K. Eissing, V. Meden, and D. M. Kennes, Functional renormalization group in floquet space, Physical Review B 94, 245116 (2016).
  21. U. Peskin, Formulation of charge transport in molecular junctions with time-dependent molecule-leads coupling operators, Fortschritte der Physik 65, 1600048 (2017).
  22. Z. N. Qaleh and A. Rezakhani, Enhancing energy transfer in quantum systems via periodic driving: Floquet master equations, Physical Review A 105, 012208 (2022).
  23. G. Engelhardt, G. Platero, and J. Cao, Discontinuities in driven spin-boson systems due to coherent destruction of tunneling: breakdown of the floquet-gibbs distribution, Physical Review Letters 123, 120602 (2019).
  24. G. Engelhardt and J. Cao, Dynamical symmetries and symmetry-protected selection rules in periodically driven quantum systems, Physical review letters 126, 090601 (2021).
  25. G. Engelhardt, S. Choudhury, and W. V. Liu, Unified light-matter floquet theory and its application to quantum communication, arXiv preprint arXiv:2207.08558  (2022).
  26. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, 2005).
  27. G. Cohen and M. Galperin, Green’s function methods for single molecule junctions, The Journal of chemical physics 152 (2020).
  28. F. Elste and C. Timm, Theory for transport through a single magnetic molecule: Endohedral n@ c 60, Physical Review B 71, 155403 (2005).
  29. J. H. Shirley, Solution of the schrödinger equation with a hamiltonian periodic in time, Physical Review 138, B979 (1965).
  30. C. Verzijl, J. Seldenthuis, and J. Thijssen, Applicability of the wide-band limit in dft-based molecular transport calculations, The Journal of chemical physics 138, 094102 (2013).
  31. T. Mori, Floquet states in open quantum systems, Annual Review of Condensed Matter Physics 14, 35 (2023).
  32. A.-P. Jauho, N. S. Wingreen, and Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems, Physical Review B 50, 5528 (1994).
  33. G. Stefanucci and C.-O. Almbladh, Time-dependent quantum transport: An exact formulation based on tddft, Europhysics Letters 67, 14 (2004).
  34. Y. Meir, N. S. Wingreen, and P. A. Lee, Transport through a strongly interacting electron system: Theory of periodic conductance oscillations, Physical review letters 66, 3048 (1991).
  35. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Vol. 123 (Springer Science & Business Media, 2007).
  36. D. A. Ryndyk et al., Theory of quantum transport at nanoscale, Springer Series in Solid-State Sciences 184, 9 (2016).
  37. M. Galperin, A. Nitzan, and M. A. Ratner, Inelastic effects in molecular junctions in the coulomb and kondo regimes: Nonequilibrium equation-of-motion approach, Physical Review B 76, 035301 (2007).
  38. U. Harbola, M. Esposito, and S. Mukamel, Quantum master equation for electron transport through quantum dots and single molecules, Physical Review B 74, 235309 (2006).
  39. W. Dou and J. E. Subotnik, A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states, The Journal of Chemical Physics 145 (2016).
  40. N. A. Zimbovskaya, Electron transport through a quantum dot in the coulomb blockade regime: nonequilibrium green’s function based model, Physical Review B 78, 035331 (2008).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com