Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NPCL: Neural Processes for Uncertainty-Aware Continual Learning (2310.19272v1)

Published 30 Oct 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Continual learning (CL) aims to train deep neural networks efficiently on streaming data while limiting the forgetting caused by new tasks. However, learning transferable knowledge with less interference between tasks is difficult, and real-world deployment of CL models is limited by their inability to measure predictive uncertainties. To address these issues, we propose handling CL tasks with neural processes (NPs), a class of meta-learners that encode different tasks into probabilistic distributions over functions all while providing reliable uncertainty estimates. Specifically, we propose an NP-based CL approach (NPCL) with task-specific modules arranged in a hierarchical latent variable model. We tailor regularizers on the learned latent distributions to alleviate forgetting. The uncertainty estimation capabilities of the NPCL can also be used to handle the task head/module inference challenge in CL. Our experiments show that the NPCL outperforms previous CL approaches. We validate the effectiveness of uncertainty estimation in the NPCL for identifying novel data and evaluating instance-level model confidence. Code is available at \url{https://github.com/srvCodes/NPCL}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Saurav Jha (14 papers)
  2. Dong Gong (56 papers)
  3. He Zhao (117 papers)
  4. Lina Yao (194 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.