Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A spectral regularisation framework for latent variable models designed for single channel applications (2310.19246v1)

Published 30 Oct 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Latent variable models (LVMs) are commonly used to capture the underlying dependencies, patterns, and hidden structure in observed data. Source duplication is a by-product of the data hankelisation pre-processing step common to single channel LVM applications, which hinders practical LVM utilisation. In this article, a Python package titled spectrally-regularised-LVMs is presented. The proposed package addresses the source duplication issue via the addition of a novel spectral regularisation term. This package provides a framework for spectral regularisation in single channel LVM applications, thereby making it easier to investigate and utilise LVMs with spectral regularisation. This is achieved via the use of symbolic or explicit representations of potential LVM objective functions which are incorporated into a framework that uses spectral regularisation during the LVM parameter estimation process. The objective of this package is to provide a consistent linear LVM optimisation framework which incorporates spectral regularisation and caters to single channel time-series applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.