Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MUST: A Multilingual Student-Teacher Learning approach for low-resource speech recognition (2310.18865v1)

Published 29 Oct 2023 in cs.CL, cs.SD, and eess.AS

Abstract: Student-teacher learning or knowledge distillation (KD) has been previously used to address data scarcity issue for training of speech recognition (ASR) systems. However, a limitation of KD training is that the student model classes must be a proper or improper subset of the teacher model classes. It prevents distillation from even acoustically similar languages if the character sets are not same. In this work, the aforementioned limitation is addressed by proposing a MUltilingual Student-Teacher (MUST) learning which exploits a posteriors mapping approach. A pre-trained mapping model is used to map posteriors from a teacher language to the student language ASR. These mapped posteriors are used as soft labels for KD learning. Various teacher ensemble schemes are experimented to train an ASR model for low-resource languages. A model trained with MUST learning reduces relative character error rate (CER) up to 9.5% in comparison with a baseline monolingual ASR.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Umar Farooq (18 papers)
  2. Rehan Ahmad (5 papers)
  3. Thomas Hain (58 papers)

Summary

We haven't generated a summary for this paper yet.