Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design-Based Causal Inference with Missing Outcomes: Missingness Mechanisms, Imputation-Assisted Randomization Tests, and Covariate Adjustment (2310.18556v5)

Published 28 Oct 2023 in stat.ME

Abstract: Design-based causal inference, also known as randomization-based or finite-population causal inference, is one of the most widely used causal inference frameworks, largely due to the merit that its validity can be guaranteed by study design (e.g., randomized experiments) and does not require assuming specific outcome-generating distributions or super-population models. Despite its advantages, design-based causal inference can still suffer from other issues, among which outcome missingness is a prevalent and significant challenge. This work systematically studies the outcome missingness problem in design-based causal inference. First, we propose a general and flexible outcome missingness mechanism that can facilitate finite-population-exact randomization tests of no treatment effect. Second, under this general missingness mechanism, we propose a general framework called ``imputation and re-imputation" for conducting randomization tests in design-based causal inference with missing outcomes. We prove that our framework can still ensure finite-population-exact type-I error rate control even when the imputation model was misspecified or when unobserved covariates or interference exist in the missingness mechanism. Third, we extend our framework to conduct covariate adjustment in randomization tests and construct finite-population-valid confidence regions with missing outcomes. Our framework is evaluated via extensive simulation studies and applied to a large-scale randomized experiment.

Summary

We haven't generated a summary for this paper yet.