Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control (2310.18342v1)

Published 22 Oct 2023 in cs.CL and cs.AI

Abstract: Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (\emph{e.g.}, \emph{language style, inner character nuances}), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textbf{\textsc{Miracle}}, a novel personalized dialogue generation method through \textbf{M}ult\textbf{I}ple Pe\textbf{R}sonal \textbf{A}ttributes \textbf{C}ontrol within \textbf{L}atent-Space \textbf{E}nergy-based Models. ttributes \textbf{C}ontrol within \textbf{L}atent-Space \textbf{E}nergy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that \textsc{Miracle} outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at \url{https://github.com/LZY-the-boys/MIRACLE}

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhenyi Lu (9 papers)
  2. Wei Wei (425 papers)
  3. Xiaoye Qu (62 papers)
  4. Dangyang Chen (20 papers)
  5. Jixiong Chen (2 papers)
  6. Xianling Mao (15 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.