Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What's Next in Affective Modeling? Large Language Models (2310.18322v1)

Published 3 Oct 2023 in cs.CL and cs.AI

Abstract: LLMs (LLM) have recently been shown to perform well at various tasks from language understanding, reasoning, storytelling, and information search to theory of mind. In an extension of this work, we explore the ability of GPT-4 to solve tasks related to emotion prediction. GPT-4 performs well across multiple emotion tasks; it can distinguish emotion theories and come up with emotional stories. We show that by prompting GPT-4 to identify key factors of an emotional experience, it is able to manipulate the emotional intensity of its own stories. Furthermore, we explore GPT-4's ability on reverse appraisals by asking it to predict either the goal, belief, or emotion of a person using the other two. In general, GPT-4 can make the correct inferences. We suggest that LLMs could play an important role in affective modeling; however, they will not fully replace works that attempt to model the mechanisms underlying emotion-related processes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  2. O. AI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
  3. S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, et al., “Sparks of artificial general intelligence: Early experiments with gpt-4,” arXiv preprint arXiv:2303.12712, 2023.
  4. M. Binz and E. Schulz, “Using cognitive psychology to understand gpt-3,” Proceedings of the National Academy of Sciences, vol. 120, no. 6, p. e2218523120, 2023.
  5. M. Kosinski, “Theory of mind may have spontaneously emerged in large language models,” arXiv preprint arXiv:2302.02083, 2023.
  6. B. Peng, C. Li, P. He, M. Galley, and J. Gao, “Instruction tuning with gpt-4,” arXiv preprint arXiv:2304.03277, 2023.
  7. LMSYS, “Chatbot arena leaderboard,” 2023.
  8. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27730–27744, 2022.
  9. S. Hareli and U. Hess, “What emotional reactions can tell us about the nature of others: An appraisal perspective on person perception,” Cognition and emotion, vol. 24, no. 1, pp. 128–140, 2010.
  10. C. M. De Melo, P. J. Carnevale, S. J. Read, and J. Gratch, “Reading people’s minds from emotion expressions in interdependent decision making.,” Journal of personality and social psychology, vol. 106, no. 1, p. 73, 2014.
  11. D. C. Ong, J. Zaki, and N. D. Goodman, “Computational models of emotion inference in theory of mind: A review and roadmap,” Topics in cognitive science, vol. 11, no. 2, pp. 338–357, 2019.
  12. P. Ekman et al., “Basic emotions,” Handbook of cognition and emotion, vol. 98, no. 45-60, p. 16, 1999.
  13. L. F. Barrett, “The theory of constructed emotion: an active inference account of interoception and categorization,” Social cognitive and affective neuroscience, vol. 12, no. 1, pp. 1–23, 2017.
  14. Oxford University Press on Demand, 1991.
  15. R. McKee, “Storytelling that moves people. a conversation with screenwriting coach robert McKee.,” vol. 81, no. 6, pp. 51–55, 136. Place: United States.
  16. K. Vonnegut, Palm Sunday. Rosetta Books.
  17. K. Oatley, “Why fiction may be twice as true as fact: Fiction as cognitive and emotional simulation,” vol. 3, no. 2, pp. 101–117.
  18. R. A. Mar and K. Oatley, “The function of fiction is the abstraction and simulation of social experience,” vol. 3, no. 3, pp. 173–192.
  19. K. R. Scherer, “Appraisal considered as a process of multilevel sequential checking,” Appraisal processes in emotion: Theory, methods, research, vol. 92, no. 120, p. 57, 2001.
  20. S. Hareli and U. Hess, “The reverse engineering of emotions–observers of others’ emotions as naïve personality psychologists,” The Social Nature of Emotion Expression: What Emotions Can Tell Us About the World, pp. 103–118, 2019.
  21. Columbia University Press, 1960.
  22. A. Moors, P. C. Ellsworth, K. R. Scherer, and N. H. Frijda, “Appraisal theories of emotion: State of the art and future development,” Emotion Review, vol. 5, no. 2, pp. 119–124, 2013.
  23. Y. Wu, C. Baker, J. Tenenbaum, and L. Schulz, “Joint inferences of belief and desire from facial expressions,” in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 36, 2014.
  24. N. Yongsatianchot and S. Marsella, “Integrating model-based prediction and facial expressions in the perception of emotion,” in Artificial General Intelligence: 9th International Conference, AGI 2016, New York, NY, USA, July 16-19, 2016, Proceedings 9, pp. 234–243, Springer, 2016.
  25. S. D. Houlihan, D. Ong, M. Cusimano, and R. Saxe, “Reasoning about the antecedents of emotions: Bayesian causal inference over an intuitive theory of mind,” in Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 44, 2022.
  26. Wikipedia, “Quidditch,” 2023.
  27. Cambridge university press, 1988.
  28. K. Oatley, “Fiction: Simulation of social worlds,” vol. 20, no. 8, pp. 618–628.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)