Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MalFake: A Multimodal Fake News Identification for Malayalam using Recurrent Neural Networks and VGG-16 (2310.18263v1)

Published 27 Oct 2023 in cs.CL and cs.CY

Abstract: The amount of news being consumed online has substantially expanded in recent years. Fake news has become increasingly common, especially in regional languages like Malayalam, due to the rapid publication and lack of editorial standards on some online sites. Fake news may have a terrible effect on society, causing people to make bad judgments, lose faith in authorities, and even engage in violent behavior. When we take into the context of India, there are many regional languages, and fake news is spreading in every language. Therefore, providing efficient techniques for identifying false information in regional tongues is crucial. Until now, little to no work has been done in Malayalam, extracting features from multiple modalities to classify fake news. Multimodal approaches are more accurate in detecting fake news, as features from multiple modalities are extracted to build the deep learning classification model. As far as we know, this is the first piece of work in Malayalam that uses multimodal deep learning to tackle false information. Models trained with more than one modality typically outperform models taught with only one modality. Our study in the Malayalam language utilizing multimodal deep learning is a significant step toward more effective misinformation detection and mitigation.

Summary

We haven't generated a summary for this paper yet.