Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Challenge in Reweighting Data with Bilevel Optimization (2310.17386v1)

Published 26 Oct 2023 in stat.ML and cs.LG

Abstract: In many scenarios, one uses a large training set to train a model with the goal of performing well on a smaller testing set with a different distribution. Learning a weight for each data point of the training set is an appealing solution, as it ideally allows one to automatically learn the importance of each training point for generalization on the testing set. This task is usually formalized as a bilevel optimization problem. Classical bilevel solvers are based on a warm-start strategy where both the parameters of the models and the data weights are learned at the same time. We show that this joint dynamic may lead to sub-optimal solutions, for which the final data weights are very sparse. This finding illustrates the difficulty of data reweighting and offers a clue as to why this method is rarely used in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.