Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

math-PVS: A Large Language Model Framework to Map Scientific Publications to PVS Theories (2310.17064v1)

Published 25 Oct 2023 in cs.AI, cs.CL, cs.LG, and cs.LO

Abstract: As AI gains greater adoption in a wide variety of applications, it has immense potential to contribute to mathematical discovery, by guiding conjecture generation, constructing counterexamples, assisting in formalizing mathematics, and discovering connections between different mathematical areas, to name a few. While prior work has leveraged computers for exhaustive mathematical proof search, recent efforts based on LLMs aspire to position computing platforms as co-contributors in the mathematical research process. Despite their current limitations in logic and mathematical tasks, there is growing interest in melding theorem proving systems with foundation models. This work investigates the applicability of LLMs in formalizing advanced mathematical concepts and proposes a framework that can critically review and check mathematical reasoning in research papers. Given the noted reasoning shortcomings of LLMs, our approach synergizes the capabilities of proof assistants, specifically PVS, with LLMs, enabling a bridge between textual descriptions in academic papers and formal specifications in PVS. By harnessing the PVS environment, coupled with data ingestion and conversion mechanisms, we envision an automated process, called \emph{math-PVS}, to extract and formalize mathematical theorems from research papers, offering an innovative tool for academic review and discovery.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hassen Saidi (2 papers)
  2. Susmit Jha (55 papers)
  3. Tuhin Sahai (27 papers)

Summary

We haven't generated a summary for this paper yet.