Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Inflationary Potentials (2310.16786v2)

Published 25 Oct 2023 in astro-ph.CO, cs.LG, gr-qc, hep-ph, and hep-th

Abstract: Inflation is a highly favoured theory for the early Universe. It is compatible with current observations of the cosmic microwave background and large scale structure and is a driver in the quest to detect primordial gravitational waves. It is also, given the current quality of the data, highly under-determined with a large number of candidate implementations. We use a new method in symbolic regression to generate all possible simple scalar field potentials for one of two possible basis sets of operators. Treating these as single-field, slow-roll inflationary models we then score them with an information-theoretic metric ("minimum description length") that quantifies their efficiency in compressing the information in current data. We explore two possible priors on the parameter space of potentials, one related to the functions' structural complexity and one that uses a Katz back-off LLM to prefer functions that may be theoretically motivated. This enables us to identify the inflaton potentials that optimally balance simplicity with accuracy at explaining current data, which may subsequently find theoretical motivation. Our exploratory study opens the door to extraction of fundamental physics directly from data, and may be augmented with more refined theoretical priors in the quest for a complete understanding of the early Universe.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  2. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
  3. A. D. Linde, Phys. Lett. B 108, 389 (1982).
  4. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  5. R. Brandenberger and P. Peter, Found. Phys. 47, 797 (2017), arXiv:1603.05834 [hep-th] .
  6. R. H. Brandenberger and C. Vafa, Nucl. Phys. B 316, 391 (1989).
  7. W. J. Wolf and P. G. Ferreira, Phys. Rev. D 108, 103519 (2023), arXiv:2310.07482 [astro-ph.CO] .
  8. J. Rissanen, Automatica 14, 465 (1978).
  9. J. Rissanen, The Annals of Statistics 11, 416 (1983).
  10. T. Rudelius, JCAP 02, 044 (2019), arXiv:1810.05159 [hep-th] .
  11. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  12. D. Baumann, Cosmology (Cambridge University Press, 2022).
  13. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
  14. T. McConaghy, “Ffx: Fast, scalable, deterministic symbolic regression technology,” in Genetic Programming Theory and Practice IX, edited by R. Riolo, E. Vladislavleva,  and J. H. Moore (Springer New York, New York, NY, 2011) pp. 235–260.
  15. S.-M. Udrescu and M. Tegmark, Science Advances 6, eaay2631 (2020), arXiv:1905.11481 [physics.comp-ph] .
  16. M. Cranmer, “Pysr: Fast & parallelized symbolic regression in python/julia,”  (2020).
  17. M. Cranmer, arXiv e-prints , arXiv:2305.01582 (2023), arXiv:2305.01582 [astro-ph.IM] .
  18. Evolved Analytics LLC. Data Modeler 9.5.1. Evolved analytics LLC. URL: www.evolved-analytics.com; 2021.
  19. M. Schmidt and H. Lipson, Science 324, 81 (2009), https://www.science.org/doi/pdf/10.1126/science.1165893 .
  20. M. Schmidt and H. Lipson, “Age-fitness pareto optimization,” in Genetic Programming Theory and Practice VIII, edited by R. Riolo, T. McConaghy,  and E. Vladislavleva (Springer New York, New York, NY, 2011) pp. 129–146.
  21. F. O. de Franca and G. S. I. Aldeia, Evolutionary Computation 29, 367 (2021), https://direct.mit.edu/evco/article-pdf/29/3/367/1959462/evco_a_00285.pdf .
  22. R. Kallosh and A. Linde, JCAP 12, 008 (2021), arXiv:2110.10902 [astro-ph.CO] .
  23. A. M. Turing, Mind LIX, 433 (1950).
  24. E. David, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  25. R. Haupt and S. Haupt, Practical genetic algorithms, 2nd ed. (Wyley, 2004).
  26. S. M. Katz, IEEE Trans. Acoust. Speech Signal Process. 35, 400 (1987).
  27. C. G. Broyden, IMA Journal of Applied Mathematics 6, 76 (1970), https://academic.oup.com/imamat/article-pdf/6/1/76/2233756/6-1-76.pdf .
  28. R. Fletcher, The Computer Journal 13, 317 (1970), https://academic.oup.com/comjnl/article-pdf/13/3/317/988678/130317.pdf .
  29. A. D. Linde and D. A. Linde, Phys. Rev. D 50, 2456 (1994), arXiv:hep-th/9402115 .
  30. E. Witten, Nucl. Phys. B 188, 513 (1981).
  31. A. A. Gerasimov and S. L. Shatashvili, JHEP 10, 034 (2000), arXiv:hep-th/0009103 .
  32. P. Ade et al. (Simons Observatory), JCAP 02, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
  33. S. O. Collaboration, JCAP 2019, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
  34. N. K. Stein and W. H. Kinney, JCAP 03, 027 (2023), arXiv:2210.05757 [astro-ph.CO] .
  35. D. H. Lyth, Phys. Rev. Lett. 78, 1861 (1997), arXiv:hep-ph/9606387 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com