Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How can neuromorphic hardware attain brain-like functional capabilities? (2310.16444v1)

Published 25 Oct 2023 in cs.NE and q-bio.NC

Abstract: Research on neuromorphic computing is driven by the vision that we can emulate brain-like computing capability, learning capability, and energy-efficiency in novel hardware. Unfortunately, this vision has so far been pursued in a half-hearted manner. Most current neuromorphic hardware (NMHW) employs brain-like spiking neurons instead of standard artificial neurons. This is a good first step, which does improve the energy-efficiency of some computations, see \citep{rao2022long} for one of many examples. But current architectures and training methods for networks of spiking neurons in NMHW are largely copied from artificial neural networks. Hence it is not surprising that they inherit many deficiencies of artificial neural networks, rather than attaining brain-like functional capabilities. Of course, the brain is very complex, and we cannot implement all its details in NMHW. Instead, we need to focus on principles that are both easy to implement in NMHW and are likely to support brain-like functionality. The goal of this article is to highlight some of them.

Citations (1)

Summary

We haven't generated a summary for this paper yet.