Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Theoretic Generalization Analysis for Topology-aware Heterogeneous Federated Edge Learning over Noisy Channels (2310.16407v3)

Published 25 Oct 2023 in cs.IT, cs.LG, and math.IT

Abstract: With the rapid growth of edge intelligence, the deployment of federated learning (FL) over wireless networks has garnered increasing attention, which is called Federated Edge Learning (FEEL). In FEEL, both mobile devices transmitting model parameters over noisy channels and collecting data in diverse environments pose challenges to the generalization of trained models. Moreover, devices can engage in decentralized FL via Device-to-Device communication while the communication topology of connected devices also impacts the generalization of models. Most recent theoretical studies overlook the incorporation of all these effects into FEEL when developing generalization analyses. In contrast, our work presents an information-theoretic generalization analysis for topology-aware FEEL in the presence of data heterogeneity and noisy channels. Additionally, we propose a novel regularization method called Federated Global Mutual Information Reduction (FedGMIR) to enhance the performance of models based on our analysis. Numerical results validate our theoretical findings and provide evidence for the effectiveness of the proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3546–3557, 2020.
  2. H. Xing, O. Simeone, and S. Bi, “Federated learning over wireless device-to-device networks: Algorithms and convergence analysis,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3723–3741, 2021.
  3. X. Hu, S. Li, and Y. Liu, “Generalization bounds for federated learning: Fast rates, unparticipating clients and unbounded losses,” in ICLR, OpenReview.net, 2023.
  4. Z. Sun, X. Niu, and E. Wei, “Understanding generalization of federated learning via stability: Heterogeneity matters,” CoRR, vol. abs/2306.03824, 2023.
  5. Z. Wu, Z. Xu, D. Zeng, and Q. Wang, “Federated generalization via information-theoretic distribution diversification,” 2023.
  6. T. Sun, D. Li, and B. Wang, “Stability and generalization of decentralized stochastic gradient descent,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 9756–9764, 2021.
  7. Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos: An experimental study,” in ICDE, pp. 965–978, IEEE, 2022.
  8. L. P. Barnes, A. Dytso, and H. V. Poor, “Improved information-theoretic generalization bounds for distributed, federated, and iterative learning,” Entropy, vol. 24, no. 9, p. 1178, 2022.
  9. S. Yagli, A. Dytso, and H. V. Poor, “Information-theoretic bounds on the generalization error and privacy leakage in federated learning,” in SPAWC, pp. 1–5, IEEE, 2020.
  10. A. Pensia, V. S. Jog, and P. Loh, “Generalization error bounds for noisy, iterative algorithms,” in 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, pp. 546–550, IEEE, 2018.
  11. G. Neu, “Information-theoretic generalization bounds for stochastic gradient descent,” in COLT, vol. 134 of Proceedings of Machine Learning Research, pp. 3526–3545, PMLR, 2021.
  12. J. Du, B. Jiang, C. Jiang, Y. Shi, and Z. Han, “Gradient and channel aware dynamic scheduling for over-the-air computation in federated edge learning systems,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 1035–1050, 2023.
  13. Z. Wang, S. Huang, E. E. Kuruoglu, J. Sun, X. Chen, and Y. Zheng, “Pac-bayes information bottleneck,” in ICLR, OpenReview.net, 2022.
  14. J. Lei, P. Yi, Y. Hong, J. Chen, and G. Shi, “Online convex optimization over erdos-renyi random networks,” in NeurIPS, 2020.
  15. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in AISTATS, vol. 54 of Proceedings of Machine Learning Research, pp. 1273–1282, PMLR, 2017.
  16. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine learning and systems, vol. 2, pp. 429–450, 2020.
  17. Y. Shi, J. Liang, W. Zhang, V. Y. F. Tan, and S. Bai, “Towards understanding and mitigating dimensional collapse in heterogeneous federated learning,” in ICLR, OpenReview.net, 2023.
  18. X. Niu and E. Wei, “Fedhybrid: A hybrid federated optimization method for heterogeneous clients,” IEEE Trans. Signal Process., vol. 71, pp. 150–163, 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.