Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pixel-Level Clustering Network for Unsupervised Image Segmentation (2310.16234v1)

Published 24 Oct 2023 in cs.CV and cs.AI

Abstract: While image segmentation is crucial in various computer vision applications, such as autonomous driving, grasping, and robot navigation, annotating all objects at the pixel-level for training is nearly impossible. Therefore, the study of unsupervised image segmentation methods is essential. In this paper, we present a pixel-level clustering framework for segmenting images into regions without using ground truth annotations. The proposed framework includes feature embedding modules with an attention mechanism, a feature statistics computing module, image reconstruction, and superpixel segmentation to achieve accurate unsupervised segmentation. Additionally, we propose a training strategy that utilizes intra-consistency within each superpixel, inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images. To avoid potential over-segmentation caused by superpixel-based losses, we also propose a post-processing method. Furthermore, we present an extension of the proposed method for unsupervised semantic segmentation. We conducted experiments on three publicly available datasets (Berkeley segmentation dataset, PASCAL VOC 2012 dataset, and COCO-Stuff dataset) to demonstrate the effectiveness of the proposed framework. The experimental results show that the proposed framework outperforms previous state-of-the-art methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.