Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional estimation in high-dimensional and infinite-dimensional models (2310.16129v1)

Published 24 Oct 2023 in math.ST and stat.TH

Abstract: Let ${\mathcal P}$ be a family of probability measures on a measurable space $(S,{\mathcal A}).$ Given a Banach space $E,$ a functional $f:E\mapsto {\mathbb R}$ and a mapping $\theta: {\mathcal P}\mapsto E,$ our goal is to estimate $f(\theta(P))$ based on i.i.d. observations $X_1,\dots, X_n\sim P, P\in {\mathcal P}.$ In particular, if ${\mathcal P}={P_{\theta}: \theta\in \Theta}$ is an identifiable statistical model with parameter set $\Theta\subset E,$ one can consider the mapping $\theta(P)=\theta$ for $P\in {\mathcal P}, P=P_{\theta},$ resulting in a problem of estimation of $f(\theta)$ based on i.i.d. observations $X_1,\dots, X_n\sim P_{\theta}, \theta\in \Theta.$ Given a smooth functional $f$ and estimators $\hat \theta_n(X_1,\dots, X_n), n\geq 1$ of $\theta(P),$ we use these estimators, the sample split and the Taylor expansion of $f(\theta(P))$ of a proper order to construct estimators $T_f(X_1,\dots, X_n)$ of $f(\theta(P)).$ For these estimators and for a functional $f$ of smoothness $s\geq 1,$ we prove upper bounds on the $L_p$-errors of estimator $T_f(X_1,\dots, X_n)$ under certain moment assumptions on the base estimators $\hat \theta_n.$ We study the performance of estimators $T_f(X_1,\dots, X_n)$ in several concrete problems, showing their minimax optimality and asymptotic efficiency. In particular, this includes functional estimation in high-dimensional models with many low dimensional components, functional estimation in high-dimensional exponential families and estimation of functionals of covariance operators in infinite-dimensional subgaussian models.

Summary

We haven't generated a summary for this paper yet.